
AN INEQUALITY ON DOUBLY STOCHASTIC MATRICES

C. J. EVERETT

1. Introduction. A problem of van der Waerden concerns the in-

equality Per(X) ^ra!/ran for a doubly stochastic matrix X of order ra,

i.e., having all elements x¿/s_0 and all row and column sums unity.

The permanent Per(X) is defined, as a function of the x,y, just as is

the determinant, except that all signs are taken positive. (Cf.  [2].)

We prove it here for the very special case of such a matrix X with

one arbitrary row Xi, • • • , x„ of non-negative numbers with sum 1,

all ra —1 remaining rows being (1—Xi)/(ra —1), • • • , (1 —xn)/(ra —1).

For such an X, the above inequality is tantamount to

(1) E Xj{(1 - xi) • • ■ (1 - xn)}j è ((ra - l)/ny-\

where the bracket omits the factor (1 — x¡).

Even this special case has some interesting consequences. For

example, the left side is — F'(l), where

Fit) = (1 - xiO ■ • • (1 - xnt) = 1 - ait + <nt2 - • • • + (-l)W,

so that (1) is equivalent to

(2) <ri - 2<r, + 3<r,-+ (-l)""1«^ ^ ((« - 1)/»)*"*,

where the <r,- are the elementary symmetric functions of non-negative

Xi, • • • , x„, with o"i = 1.

If any x, = 1, all others are zero and (1) is trivial. Hence an essen-

tially identical form is

(3) fl (1 - Xj) E Xj/il - Xj) ̂ Un - l)/n)»-\
i i

for 0^Xj<l, with Y£x, = l. Consequently, if Y^î Xj=l, where

0 ^Xj < 1 for all j, then the ra numbers Xi, • • • , x„_i, and Xn = E« xi

satisfy (3) for ra sufficiently large. Since the infinite product and sum

converge, we have in the limit

(4) ft (1 - «¿) È *//(! - *i) = e-1
i i

(cf. [1, p. 224]).
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2. Proof of an inequality. With little additional trouble we prove

a result somewhat stronger than (1), namely the

Theorem. If for n~^2, Xy ■ ■ ■ , xnare non-negative real numbers ^1

with sum x^3/2, then

(5) 5 = £ xj{ (1 - xi) ... (1 - *.)}, è x(l - (x/«))-1 m 50.
i

Proof is by induction on «2:2. Since Xi(l—x2)+x2(l—xi) =x — 2xix2

^x — 2(x/2)2 for arbitrary non-negative x¡ with sum x, we fix »^3,

and » numbers x¡ with sumx£13/2, so ordered that l^Xi^ • • • ^xn

=; 0. Clearly xn è x/n. Write

n-l

S =   (1   -  Xn) £ *,-{ (1 - Xl)   • •  • (1 - X»_l)}y
(6) i

+ xn(l - Xi) • • • (1 - X„_i).

Define y¡ by the equation l — Xj = k(l—y¡) for j = l, • • • , » —1,

where ¿ = (» — 1 — x+xn)/(n — 1— x) is so chosen that the y¡ also have

sum x. Since » —1—x>0, we have k^l and each y,- = (l — kr1)

+kr1Xj is interpolated between x¡ and 1. Thus, by the induction

hypothesis,

5' « £ yy{ (1 - yi) . • . (1 - yn_1)}j £ x(l - (x/n - 1))-' m S'0
l

while, by the geometric-arithmetic-mean inequality,

P - (1 - yi) • • • (1 - y„_i) ^ ((» - 1 - *)/(» - I))»"1.

Since we may write x¡ = yj—(k — l) ■ (1 —y¡), we see that

5 = k"~2{(l - xn)[S' - (» - 1)(* - 1)P] + kxnP}

=  k»~2{(l   -  Xn)S'  -  Pxn(x -  »Xn)/(« -   1   -  *)}.

Using the bounds on 5' and P,

S è k»-2{(n - l)x(l - xn) - xn(x - nxn)}

(7) •(»-1-x)»-2/(»-l)"-1

=  (n - 1 - X + X„)"-2{ (» - 1)X(1 - Xn)  - Xn(x - »X„)}/(« ~  l)""1

«/(*»).

Since f (x/n) = So, it suffices to show that f(xn) ^f(x/n) on 0^x„

gx/». This is apparent graphically from the nature of
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(ra - iy-yixn)

= n2in - 11- x + x„)"-3{xn - [x - 2(ra - l)/n]}{xn - [x/ra]},

where ra — 1— x+xn>0, and the first of the zeros in square brackets is

less than the second. If the first zero is nonpositive, the conclusion is

clear. The alternative case can only occur when ra = 3 (i.e., in the first

induction step), and it then suffices to know that /(0) = So è/(*/»)

= So in case ra = 3, which is obvious since xg3/2. Q.E.D.

Actually, the inequality So à So for all ra^3, 0^x^3/2, is a corol-

lary of the theorem, since Xi= • • • =x„_i = x/(ra — 1), x„ = 0 is an

admissible set of values, for which S=S¿ (cf. (6)).

The upper bound 3/2 on x is the best possible constant value since

(5) is false for ra = 3, Xi = x2 = x/2, X3 = 0, with any x on 3/2<x^2.

And of course a sum x ^ 2 allows two x¡ to be unity and (5) is mani-

festly false for ra > x.
One can see from the induction that equality holds in (5) if and

only if all Xy=x/ra, except in the one additional case ra = 3, x = 3/2,

with one x;- = 0 and the other two equal to 3/4.

As another consequence of the theorem, we note the

Corollary. If for m^l, xh • • • , xm are non-negative with sum

x'^1/2, then

(1 - x,) • ■ • (1 - x„) >(1 + x')(l - (1 + xO/(m + 1))».

This is clear from (5) and (6) if we set x„ = 1 and take m = ra — 1,

x' = x —1. The application to infinite products is the inequality

f[ (1 - xj) è (1 + x')/exp(l + x')
i

for 0 ÚXj with Ei" x, = x' ¿ 1/2.
The significance of the theorem for permanents is of course that

Per(X) =: («!/»")[*((« - x)/(ra - l))*"1],

where X is a matrix with rows as prescribed in §1, the x¡ satisfying

the conditions of the theorem. Note that this X has column sums 1,

and the factor in square brackets above is the product of its row

sums.

3. Remark on the general case. Let X be an arbitrary doubly

stochastic matrix and denote by Xi the matrix of type in §1, based

on the tth row of X. Then we have the inequalities

(1/ra) E Per(X.) ^ (Ü Per^))1'» ^ min Per(Z.) > ra!/ra»,
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and the desired result would follow if any one of these were less than

or equal to Per(X). Actually one can show, for » = 3, that

3 Per(X) à Per(X0 + Per(X2) + Per(X8),

but the method offers no hope of generalization.

Even the analogue of the theorem for two arbitrary rows has inter-

esting applications to infinite products and series which seem to be

true in the cases tried, but no proof is in sight.
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PERFECT CLOSURES OF RINGS AND SCHEMES1

MARVIN J. GREENBERG

0. In [3], Serre has defined the notion of a perfect variety over a

field of characteristic p>0. Of course, a perfect variety is, in general,

not a variety. The appropriate setting is that of schemes [2]. We

show how to construct the perfect closure of a scheme, in particular,

of a ring A, of characteristic p. This amounts to showing that the

functor 5—>Ylom(A, B) is representable in the category of perfect

rings. We do this by the technique of inductive limits.

1. Let A be a ring (meaning commutative associative unitary ring)

of characteristic p > 0, p a prime ; p is thus the smallest positive in-

teger » such that na = 0 for all aEA. Then A has a canonical ring

endomorphism, denoted F, given by

F(a) = ap,       a £ A.

Clearly, F commutes with all homomorphisms of rings of character-

istic p.

We say A is perfect il F is an automorphism of A (so that every

element of A has a unique pth root in A). For example, finite fields
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