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the power series for (â — bz)~l, however, converges as previously re-

quired, hence we have that U(a)zU(a~1) = (az — h)/(ä — bz)=o-~1z.
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ON WANDERING SUBSPACES FOR
UNITARY OPERATORS

J. B. ROBERTSON1

Let F be a unitary operator on a complex Hilbert space H. X is

said to be a wandering subspace for V if it is a subspace of H such that

Vm(X) J-V"(X) lor all m^n. The purpose of this note is to study the

relation  between   two wandering  subspaces  X and   Y satisfying

£»"._. F*(X)c£r__„ Vk(Y).

Theorem 1. Let X and Y be wandering subspaces for a unitary oper-

ator V such that:

(a) £,-__,. FHX)ç£r._„ Vk(Y),
(b) dimpO=dim(F)<oo.

Then £;._. **(*)= £,"__. F*(F).

Proof. Let xy • • • , xn and yy • ■ • , yn be orthonormal bases for

X and Y, respectively. Since x¿G ET--« Vk(Y) we have

n oo

Xi = £   £   airkVk(yr),       airk = (xif Vk(yr)),

r— 1   Jb—oo

n oo

£   £   I airk\2 < °°,   i = 1, ■ • • , n.
r—l   Jfc——oo

It follows that
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n oo

(1) AmOÍtf  =   iXi,   VmiXj))   =   2     E     a<> *<** *-m.
r—1   fc™— oo

Since   Et"--« |a<r *| 2< co, there exists a function /¡,(-)£I(0, 2t)

such that firi8)~ E"- _ „ air kem. (1) may now be restated as

(10 Ê/.r(e)7yr(Ô) = ha a.e. (Leb.),    i,/ = 1, • • • , «.
r-l

By the usual theory of nXn matrices, (1') is equivalent to

(2') E/*(0)/;.(0) = S„ a.e. (Leb.),    r, s = 1, ■ ■ ■ , n.
¿=i

(2'), in turn, may be restated in terms of the coefficients as

n oo

(2) ÔmO&rt —   2-1     jLê    äir kOi, k-m-
¿=1   A—oo

Now let Q be the projection operator onto the space E^--» V^iX).

Since (y„ Vkix,)) = âir -k, we have

n to

Q(Vr) =  E    E    ¿i* -kV"iXi),     r =  1, •  • •, ».
t—1   i—- 00

From (2) we obtain

\\Q(yr)\\2 = i E  U*-*|2 = i,  r-i,...,«.
t'=l   £~—co

Therefore,  ||y,|| =||<?(y,)]l  which implies yr = Qiyr)E E*— VkiX).

Thus £»-— F*P0 = E*"— F*(F). Q.E.D.
Theorem 1 is clearly false if dim(F)= «>, but the following corol-

lary, due to Halmos [l, Lemma 4], is true for all dimensions.

Corollary. Let X and Y be wandering subspaces for a unitary oper-

ator V such that Ei— WCET— V(Y). Then dim(X)
gdim(F).

Proof. If the dimension of Y is not finite then, since

A-c¿»-._. V*(F), dim(*)£dim(E*"---V*(I0)=dim(y) as de-
sired. Next let dim(F)=»< oo and suppose dim(X)>w. If *i, • • • ,

*n+i are orthonormal vectors in X and if X is the space spanned by

*i,---, *„,then Ei"--- V"iX) - Et"--- F*(F)|byTheorem 1. Thus
*n+iG(Er— F*(X))xn(Èr—. F*(F)) = {0J ¡which contradicts
the assumption that *„+i is normal. Thus dim(X) ^n. Q.E.D.
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It follows from the corollary, of course, that if £¿°_-» Vk(X)

= £»"--- Vk(Y), then á\m(X) =dim(F). The final theorem shows

that finite-dimensional wandering subspace may be increased to the

maximum.

Theorem 2. Let X and Y be wandering subspaces for a unitary oper-

ator V such that :

(a)£r— TOçJi..P(y),
(b) dim(F)<oo.

Then there exists a wandering subspace X such that:

(1) XQX,
(2) £r— v*(*) = £r— v*(y).

Proof. Let Xy • • ■ , xm and yy • • • , yn be orthonormal bases for

X and F, respectively, and suppose m<«. As before, let

n oo

*< = £   £  air kVk(yT),

r— 1   ä=-—«

ce

/,r(ö) ~   £   air keM,   i = 1, • • • , m, r = 1, • • • , ».
Jc=—00

Then (cf. (1')) fi(6) = (fa(e), ■ ■ • ,/,»(ö)), ¿=1, • • • , m, are ortho-
normal vectors in Cn for almost all 6. We can extend this to an ortho-

normal basis of C", (fi(6), • ■ ■ , fn(9)), and this can be done measur-

ably. (E.g., apply the Gram-Schmidt process to (fi(9), • • • , fm(d),

ey • • • , en), where e¿=(5,J)"_1.) Since /,(0) is normal almost every-

where, its component functions /,>(•) are in ¿2(0, 2w). Let, therefore,

00

MO) ~   E   air keM,    i, r = 1, • • • , ».
A==—00

Then, as in the proof of Theorem 1, the space X spanned by the

orthonormal vectors

n 00

*< = £   £   aiTkVk(yr),    i = 1, • • • , n,

r—l   k——00

has the desired properties. Q.E.D.

The following example shows that the assumption dim(F) < 00 is

essential for Theorem 2.

Example. Let yy y2, • • ■ be a complete orthonormal set of vectors

for a wandering subspace F of a unitary operator V. Let

l2 = {a = (ay a2, ■ ■ ■): ££,1 \ak\ 2< °°, ak complex numbers}, and let
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ÍOir if 0 ^ 6 ^ ir "
firie) =   < ~    E    airke™.

Ui+lr        iîir<e^2ir       £U

Then /¿(Ö) = ij%tÍ$))7-i for O^0^2x are orthonormal vectors in 1%.

Thus the space X spanned by the orthonormal vectors

OO 00

Xi=Y,T,   airkVkiyr),   i = 1,2, ■ ■ • ,
r=»l   k=—oo

is a wandering subspace contained in E"--» F*(F). X cannot be ex-

tended as in Theorem 2 since this would imply the existence of a func-

tion /: [0, 27r]—>Z2 such that (/(#), /(<?)) = 1 almost everywhere and

that ifi8), /¿(0))=O, * —1, 2, • • • , almost everywhere. But /,(0),

i= 1, 2, • • • , span ¿2 for 8 between 0 and w. On the other hand, if

l5ir      if ir < 8 ^ 2tt      *__«,

/(Ö)   =   (/r(ö))rll,

then

x=Ít   i,  brkVkiyT) E   E   VkiY)
r~l   jfc—oo A:=— <a

is clearly orthogonal to E"--« VkiX), since /(0) is orthogonal to

/r(0), r-1, 2, • • • . Thus Êr— FHXJ^Er.-» F*(F).
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