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the power series for (@—bz)~!, however, converges as previously re-
quired, hence we have that U(e)sU(c™?) = (az—b) /(G —bs) =0~ 2.
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ILLiNoOIS INSTITUTE OF TECHNOLOGY

ON WANDERING SUBSPACES FOR
UNITARY OPERATORS

J. B. ROBERTSON!

Let V be a unitary operator on a complex Hilbert space H. X is
said to be a wandering subspace for V'if it is a subspace of H such that
Vm(X) LV*(X) for all msn. The purpose of this note is to study the
relation between two wandering subspaces X and Y satisfying
2in-e VHX) S 20 VH(Y).

THEOREM 1. Let X and Y be wandering subspaces for a unitary oper-

ator V such that:

(@ Xrw VEX)C 3. VH(Y),
(b) dim(X) =dim(¥) < .

Then E:——» Vk(X)= Z:—-en Vk(Y)

Proor. Let %y, - -+, x, and y, - - -, ¥, be orthonormal bases for
X and Y, respectively. Since ;€ Y s _. V¥(¥) we have

x= 2, 2, aaiVE(),  air = (% VE()),

ram]l km—oo

n -]
2 2 lanr]t<o, i=1,.--

r=l kem—oo

It follows that
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(1) Imodis = (25, V™(2)) = D0 D2 Gir ki ke

re=]l k=—oco
Since Y _w Iai,k|2< o, there exists a function fi(-)EL(0, 2m)
such that fi(0)~ D s _« @i ™. (1) may now be restated as

(1’) Efor(o)}ﬁ(o) = 6.‘,’ a.e. (Leb.), i,j = 1’ SEIIAY '
raal
By the usual theory of # X7 matrices, (1’) is equivalent to

@) 3 Fu@fal®) = bwae. (Leb), r,5=1,-- -,

1=1

(2'), in turn, may be restated in terms of the coefficients as

(2) 6"&061‘0 = E Z dif kQis k—m.

f=1 km=—oo
Now let Q be the projection operator onto the space Y o _. V*(X).
Since (y,, V*(x;)) =3d:r —&, we have

Q(yr) = Z E Gir _.kV”(x;), r=1---,mn.

tml kms—co

From (2) we obtain

”Q(y')“2=i Z laif—kl2=1) ’=1)"°,"’-

=]l kmm—oo

Therefore, H y,” =||Q(y% which implies y,=0Q(¥,) E Do _ o VEH(X).
Thus D —w VH(X) =D it V¥V). QE.D.

Theorem 1 is clearly false if dim(Y) = «, but the following corol-
lary, due to Halmos [1, Lemma 4], is true for all dimensions.

COROLLARY. Let X and Y be wandering subspaces for a unitary oper-
ator 'V such that Y g _o VHX)C D oo VEY). Then dim(X)
=dim(Y).

Proor. If the dimension of Y is not finite then, since
XC Yo o VKY), dim(X) Sdim(Qi_» VE(Y))=dim(Y) as de-
sired. Next let dim(Y)=#n< « and suppose dim(X)>n. If xy, - - -,
%n41 are orthonormal vectors in X and if X is the space spanned by
X1, * * -, %n, then Z;’__u Ve X) = Z;‘__,, V"(Y)!by Theorem 1. Thus
%n1E( e VH X)) N (g VE(Y))={0} |which contradicts
the assumption that x,41 is normal. Thus dim(X) =#. Q.E.D.
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It follows from the corollary, of course, that if Y ;o _. V*(X)
=Y o _o V¥(Y), then dim(X)=dim(Y). The final theorem shows
that finite-dimensional wandering subspace may be increased to the
maximum.

THEOREM 2. Let X and Y be wandering subspaces for a unitary oper-
ator V such that:

@) Xim-o VHX) S 2i . VH(Y),

(b) dim(Y) < .
Then there exists a wandering subspace X such that:

(1) XCX,

@) Yo VHE) = 2. VH(T).

Proor. Let x3, + - -, % and vy, + - -, ¥, be orthonormal bases for
X and 7, respectively, and suppose m <n. As before, let

mi= 2, 2 aniVE(y),

rml kem—oo

L]
f"'(o)N 2 a‘.rke‘ko’ 'i=1,“',m,f=1,'°',n.

km=—oo

Then (cf. (1')) £:0) = (fa(0), - - -, fin(8)), =1, - - -, m, are ortho-
normal vectors in Cr for almost all §. We can extend this to an ortho-
normal basis of C», (fi(0), - - -, £f»(0)), and this can be done measur-
ably. (E.g., apply the Gram-Schmidt process to (f(0), - - -, fu(8),
ey, * - *, e,), where e;=(8;;)]-;.) Since f;(f) is normal almost every-
where, its component functions f..(:) are in Ly(0, 27). Let, therefore,

fa@ ~ 2 awwe™, ir=1,---,n
k==—o0
Then, as in the proof of Theorem 1, the space X spanned by the
orthonormal vectors

n o
xi=2 Z aikak(yr)7 i=17°"7n7

re=l kes—oo

has the desired properties. Q.E.D.

The following example shows that the assumption dim(Y) < « is
essential for Theorem 2.

ExamPLE. Let y1, ¥;, - - - be a complete orthonormal set of vectors
for a wandering subspace Y of a unitary operator V. Let
ly= {a=(a1, @y, - - ) Z{’,l [ak] 2 < «, a5 complex numbers}, and let
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Oir if 0 S0=snr d .
. ~ E Ay ,,e"“’.
Sit1r fr<0= 27 kem—oo

fi(0) = {

Then £;(6) = (fir(0)),=, for 00 =2w are orthonormal vectors in I,
Thus the space X spanned by the orthonormal vectors

X = Z Z al"ka(yr)) i=1, 2’ Tty
roml ke=—o
is a wandering subspace contained in Y ;. _. V*(Y). X cannot be ex-
tended as in Theorem 2 since this would imply the existence of a func-
tion f: [0, 2m]|—l; such that (£(6), £(§)) =1 almost everywhere and

that (£(0), £:(6))=0, ¢=1, 2, - -, almost everywhere. But £,(0),
i=1,2, - - -, span I, for 8 between 0 and 7. On the other hand, if
0 0SS0~ ol
" (0) = ~ bt
1) {a,, fr<0<2r k.z_.o s

£0) = (£+(6))rm1,
then
g=2 X baVi(y) € X VHT)
reml kme—co kem—oo
is clearly orthogonal to Y s _. V*(X), since £() is orthogonal to
£0), r=1,2,---. Thus Do _. VH(X)5% D> o _o VEH(Y).
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