the power series for $(\bar{a}-b z)^{-1}$, however, converges as previously required, hence we have that $U(\sigma) z U\left(\sigma^{-1}\right)=(a z-b) /(\bar{a}-b z)=\sigma^{-1} z$.

## References

1. G. W. Mackey, Imprimitivity for representations of a locally compact group. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545.
2. -, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311.
3. R. J. Blattner, On induced representations. II. Infinitesimal induction, Amer. J. Math. 83 (1961), 499-512.
4. V. Bargmann, Irreducible unitary representations of the Lorenz group, Ann. of Math. (2) 48 (1947), 568-640.

Illinois Institute of Technology

# ON WANDERING SUBSPACES FOR UNITARY OPERATORS 

J. B. ROBERTSON ${ }^{1}$

Let $V$ be a unitary operator on a complex Hilbert space $H . X$ is said to be a wandering subspace for $V$ if it is a subspace of $H$ such that $V^{m}(X) \perp V^{n}(X)$ for all $m \neq n$. The purpose of this note is to study the relation between two wandering subspaces $X$ and $Y$ satisfying $\sum_{k=-\infty}^{\infty} V^{k}(X) \subseteq \sum_{k=-\infty}^{\infty} V^{k}(Y)$.

Theorem 1. Let $X$ and $Y$ be wandering subspaces for a unitary operator $V$ such that:
(a) $\sum_{k=-\infty}^{\infty} V^{k}(X) \subseteq \sum_{k=-\infty}^{\infty} V^{k}(Y)$,
(b) $\operatorname{dim}(X)=\operatorname{dim}(Y)<\infty$.

Then $\sum_{k=-\infty}^{\infty} V^{k}(X)=\sum_{k=-\infty}^{\infty} V^{k}(Y)$.
Proof. Let $x_{1}, \cdots, x_{n}$ and $y_{1}, \cdots, y_{n}$ be orthonormal bases for $X$ and $Y$, respectively. Since $x_{i} \in \sum_{k=-\infty}^{\infty} V^{k}(Y)$ we have

$$
\begin{aligned}
x_{i}= & \sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} a_{i r k} V^{k}\left(y_{r}\right), \quad a_{i r k}=\left(x_{i}, V^{k}\left(y_{r}\right)\right), \\
& \sum_{r=1}^{n} \sum_{k=-\infty}^{\infty}\left|a_{i r k}\right|^{2}<\infty, \quad i=1, \cdots, n
\end{aligned}
$$

It follows that
Received by the editors October 30, 1963.
${ }^{1}$ This research was supported in part by National Science Foundation Grant No. GP 2234 while the author was at Cornell University.

$$
\begin{equation*}
\delta_{m o \delta_{i j}}=\left(x_{i}, V^{m}\left(x_{j}\right)\right)=\sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} a_{i r k} \bar{a}_{j r k-m} . \tag{1}
\end{equation*}
$$

Since $\sum_{k=-\infty}^{\infty}\left|a_{i r}\right|^{2}<\infty$, there exists a function $f_{\text {ir }}(\cdot) \in L(0,2 \pi)$ such that $f_{i r}(\theta) \sim \sum_{k=-\infty}^{\infty} a_{i r} k e^{i k \theta}$. (1) may now be restated as

$$
\sum_{r=1}^{n} f_{i r}(\theta) \bar{f}_{j r}(\theta)=\delta_{i j} \text { a.e. (Leb.), } \quad i, j=1, \cdots, n
$$

By the usual theory of $n \times n$ matrices, $\left(1^{\prime}\right)$ is equivalent to

$$
\sum_{i=1}^{n} \bar{f}_{i r}(\theta) f_{i s}(\theta)=\delta_{r s} \text { a.e. (Leb.), } \quad r, s=1, \cdots, n
$$

( $2^{\prime}$ ), in turn, may be restated in terms of the coefficients as

$$
\begin{equation*}
\delta_{m 0} \delta_{r s}=\sum_{i=1}^{n} \sum_{k=-\infty}^{\infty} \bar{a}_{i r k} a_{i s k-m} \tag{2}
\end{equation*}
$$

Now let $Q$ be the projection operator onto the space $\sum_{\mathrm{k}=-\infty}^{\infty} V^{k}(X)$. Since $\left(y_{r}, V^{k}\left(x_{i}\right)\right)=\bar{a}_{i r-k}$, we have

$$
Q\left(y_{r}\right)=\sum_{i=1}^{n} \sum_{k=-\infty}^{\infty} a_{i r-k} V^{k}\left(x_{i}\right), \quad r=1, \cdots, n .
$$

From (2) we obtain

$$
\left\|Q\left(y_{r}\right)\right\|^{2}=\sum_{i=1}^{n} \sum_{k=-\infty}^{\infty}\left|a_{i r-k}\right|^{2}=1, \quad r=1, \cdots, n
$$

Therefore, $\left\|y_{r}\right\|=\left\|Q\left(y_{r}\right)\right\|_{\infty}$ which implies $y_{r}=Q\left(y_{r}\right) \in \sum_{\mathrm{t}-\infty}^{\infty} V^{k}(X)$. Thus $\sum_{k=-\infty}^{\infty} V^{k}(X)=\sum_{k=-\infty}^{\infty} V^{k}(Y)$. Q.E.D.

Theorem 1 is clearly false if $\operatorname{dim}(Y)=\infty$, but the following corollary, due to Halmos [1, Lemma 4], is true for all dimensions.

Corollary. Let $X$ and $Y$ be wandering subspaces for a unitary operator $V$ such that $\sum_{k=-\infty}^{\infty} V^{k}(X) \subseteq \sum_{k=-\infty}^{\infty} V^{k}(Y)$. Then $\operatorname{dim}(X)$ $\leqq \operatorname{dim}(Y)$.

Proof. If the dimension of $Y$ is not finite then, since $X \subseteq \sum_{k=-\infty}^{\infty} V^{k}(Y), \operatorname{dim}(X) \leqq \operatorname{dim}\left(\sum_{k=-\infty}^{\infty} V^{k}(Y)\right)=\operatorname{dim}(Y)$ as desired. Next let $\operatorname{dim}(Y)=n<\infty$ and suppose $\operatorname{dim}(X)>n$. If $x_{1}, \cdots$, $x_{n+1}$ are orthonormal vectors in $X$ and if $\tilde{X}$ is the space spanned by $x_{1}, \cdots, x_{n}$, then $\sum_{k--\infty}^{\infty} V^{k}(\tilde{X})=\sum_{k=-\infty}^{\infty} V^{k}(Y)$ by Theorem 1. Thus $x_{n+1} \in\left(\sum_{k=-\infty}^{\infty} V^{k}(\tilde{X})\right)^{\perp} \cap\left(\sum_{k=-\infty}^{\infty} V^{k}(Y)\right)=\{0\} \quad$ which contradicts the assumption that $x_{n+1}$ is normal. Thus $\operatorname{dim}(X) \leqq n$. Q.E.D.

It follows from the corollary, of course, that if $\sum_{k=-\infty}^{\infty} V^{k}(X)$ $=\sum_{k=-\infty}^{\infty} V^{k}(Y)$, then $\operatorname{dim}(X)=\operatorname{dim}(Y)$. The final theorem shows that finite-dimensional wandering subspace may be increased to the maximum.

Theorem 2. Let $X$ and $Y$ be wandering subspaces for a unitary operator $V$ such that:
(a) $\sum_{k=-\infty}^{\infty} V^{k}(X) \subseteq \sum_{k=-\infty}^{\infty} V^{k}(Y)$,
(b) $\operatorname{dim}(Y)<\infty$.

Then there exists a wandering subspace $\tilde{X}$ such that:
(1) $X \subseteq \tilde{X}$,
(2) $\sum_{k=-\infty}^{\infty} V^{k}(\tilde{X})=\sum_{k=-\infty}^{\infty} V^{k}(Y)$.

Proof. Let $x_{1}, \cdots, x_{m}$ and $y_{1}, \cdots, y_{n}$ be orthonormal bases for $X$ and $Y$, respectively, and suppose $m<n$. As before, let

$$
\begin{aligned}
x_{i} & =\sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} a_{i r} V^{k}\left(y_{r}\right), \\
f_{i r}(\theta) & \sim \sum_{k=-\infty}^{\infty} a_{i r k} e^{i k \theta}, \quad i=1, \cdots, m, r=1, \cdots, n .
\end{aligned}
$$

Then (cf. $\left.\left(1^{\prime}\right)\right) f_{i}(\theta)=\left(f_{i 1}(\theta), \cdots, f_{i n}(\theta)\right), i=1, \cdots, m$, are orthonormal vectors in $C^{n}$ for almost all $\theta$. We can extend this to an orthonormal basis of $C^{n},\left(f_{1}(\theta), \cdots, f_{n}(\theta)\right)$, and this can be done measurably. (E.g., apply the Gram-Schmidt process to $\left(\boldsymbol{f}_{1}(\theta), \cdots, \boldsymbol{f}_{m}(\theta)\right.$, $\left.e_{1}, \cdots, e_{n}\right)$, where $e_{i}=\left(\delta_{i j}\right)_{j=1}^{n}$.) Since $\boldsymbol{f}_{i}(\theta)$ is normal almost everywhere, its component functions $f_{i r}(\cdot)$ are in $L_{2}(0,2 \pi)$. Let, therefore,

$$
f_{i r}(\theta) \sim \sum_{k=-\infty}^{\infty} a_{i r} e^{i k \theta}, \quad i, r=1, \cdots, n
$$

Then, as in the proof of Theorem 1, the space $\tilde{X}$ spanned by the orthonormal vectors

$$
x_{i}=\sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} a_{i r k} V^{k}\left(y_{r}\right), \quad i=1, \cdots, n
$$

has the desired properties. Q.E.D.
The following example shows that the assumption $\operatorname{dim}(Y)<\infty$ is essential for Theorem 2.

Example. Let $y_{1}, y_{2}, \cdots$ be a complete orthonormal set of vectors for a wandering subspace $Y$ of a unitary operator $V$. Let $l_{2}=\left\{a=\left(a_{1}, a_{2}, \cdots\right): \sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty, a_{k}\right.$ complex numbers $\}$, and let

$$
f_{i r}(\theta)=\left\{\begin{array}{ll}
\delta_{i r} & \text { if } 0 \leqq \theta \leqq \pi \\
\delta_{i+1 r} & \text { if } \pi<\theta \leqq 2 \pi
\end{array} \sim \sum_{k=-\infty}^{\infty} a_{i r} e^{i k \theta}\right.
$$

Then $f_{i}(\theta)=\left(f_{i r}(\theta)\right)_{r=1}^{\infty}$ for $0 \leqq \theta \leqq 2 \pi$ are orthonormal vectors in $l_{2}$. Thus the space $X$ spanned by the orthonormal vectors

$$
x_{i}=\sum_{r=1}^{\infty} \sum_{k=-\infty}^{\infty} a_{i r k} V^{k}\left(y_{r}\right), \quad i=1,2, \cdots,
$$

is a wandering subspace contained in $\sum_{k=-\infty}^{\infty} V^{k}(Y)$. $X$ cannot be extended as in Theorem 2 since this would imply the existence of a function $f:[0,2 \pi] \rightarrow l_{2}$ such that $(f(\theta), f(\theta))=1$ almost everywhere and that $\left(f(\theta), f_{i}(\theta)\right)=0, i=1,2, \cdots$, almost everywhere. But $f_{i}(\theta)$, $i=1,2, \cdots, \operatorname{span} l_{2}$ for $\theta$ between 0 and $\pi$. On the other hand, if

$$
\begin{aligned}
f_{r}(\theta) & =\left\{\begin{array}{ll}
0 & \text { if } 0 \leqq \theta \leqq \pi \\
\delta_{1 r} & \text { if } \pi<\theta \leqq 2 \pi
\end{array} \sim \sum_{k=-\infty}^{\infty} b_{r k} e^{i k \theta},\right. \\
f(\theta) & =\left(f_{r}(\theta)\right)_{r=1}^{\infty},
\end{aligned}
$$

then

$$
x=\sum_{r=1}^{\infty} \sum_{k=-\infty}^{\infty} b_{r k} V^{k}\left(y_{r}\right) \in \sum_{k=-\infty}^{\infty} V^{k}(Y)
$$

is clearly orthogonal to $\sum_{k=-\infty}^{\infty} V^{k}(X)$, since $f(\theta)$ is orthogonal to $f_{r}(\theta), r=1,2, \cdots$ Thus $\sum_{k=-\infty}^{\infty} V^{k}(X) \neq \sum_{k=-\infty}^{\infty} V^{k}(Y)$.

## Reference

1. P. Halmos, Shifts on Hilbert space, J. Reine Angew. Math. 208 (1961), 102-112.

Indiana University and
Cornell University

