the power series for $(\bar{a}-bz)^{-1}$, however, converges as previously required, hence we have that $U(\sigma)zU(\sigma^{-1}) = (az - \bar{b})/(\bar{a} - bz) = \sigma^{-1}z$.

References

1. G. W. Mackey, Imprimitivity for representations of a locally compact group. I. Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545.

2. ——, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311.

3. R. J. Blattner, On induced representations. II. Infinitesimal induction, Amer. J. Math. 83 (1961), 499-512.

4. V. Bargmann, Irreducible unitary representations of the Lorenz group, Ann. of Math. (2) 48 (1947), 568-640.

ILLINOIS INSTITUTE OF TECHNOLOGY

ON WANDERING SUBSPACES FOR UNITARY OPERATORS

J. B. ROBERTSON¹

Let V be a unitary operator on a complex Hilbert space H. X is said to be a wandering subspace for V if it is a subspace of H such that $V^m(X) \perp V^n(X)$ for all $m \neq n$. The purpose of this note is to study the relation between two wandering subspaces X and Y satisfying $\sum_{k=-\infty}^{\infty} V^k(X) \subseteq \sum_{k=-\infty}^{\infty} V^k(Y).$

THEOREM 1. Let X and Y be wandering subspaces for a unitary operator V such that:

(a) $\sum_{k=-\infty}^{\infty} V^k(X) \subseteq \sum_{k=-\infty}^{\infty} V^k(Y)$,

(b) $\dim(X) = \dim(Y) < \infty$. Then $\sum_{k=-\infty}^{\infty} V^{k}(X) = \sum_{k=-\infty}^{\infty} V^{k}(Y)$.

PROOF. Let x_1, \dots, x_n and y_1, \dots, y_n be orthonormal bases for X and Y, respectively. Since $x_i \in \sum_{k=-\infty}^{\infty} V^k(Y)$ we have

$$x_{i} = \sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} a_{ir \ k} V^{k}(y_{r}), \qquad a_{ir \ k} = (x_{i}, \ V^{k}(y_{r})),$$
$$\sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} |a_{ir \ k}|^{2} < \infty, \quad i = 1, \ \cdots, \ n.$$

It follows that

Received by the editors October 30, 1963.

¹ This research was supported in part by National Science Foundation Grant No. GP 2234 while the author was at Cornell University.

J. B. ROBERTSON

(1)
$$\delta_{m0}\delta_{ij} = (x_i, V^m(x_j)) = \sum_{r=1}^n \sum_{k=-\infty}^\infty a_{ir\,k}\bar{a}_{jr\,k-m}$$

Since $\sum_{k=-\infty}^{\infty} |a_{ir\,k}|^2 < \infty$, there exists a function $f_{ir}(\cdot) \in L(0, 2\pi)$ such that $f_{ir}(\theta) \sim \sum_{k=-\infty}^{\infty} a_{ir\,k} e^{ik\theta}$. (1) may now be restated as

(1')
$$\sum_{r=1}^{n} f_{ir}(\theta) \overline{f}_{jr}(\theta) = \delta_{ij} \text{ a.e. (Leb.)}, \quad i, j = 1, \cdots, n.$$

By the usual theory of $n \times n$ matrices, (1') is equivalent to

(2')
$$\sum_{i=1}^{n} \overline{f}_{ir}(\theta) f_{is}(\theta) = \delta_{rs} \text{ a.e. (Leb.)}, \quad r, s = 1, \cdots, n.$$

(2'), in turn, may be restated in terms of the coefficients as

(2)
$$\delta_{m0}\delta_{rs} = \sum_{i=1}^{n} \sum_{k=-\infty}^{\infty} \bar{a}_{ir \ k}a_{is \ k-m}.$$

Now let Q be the projection operator onto the space $\sum_{k=-\infty}^{\infty} V^k(X)$. Since $(y_r, V^k(x_i)) = \bar{a}_{ir-k}$, we have

$$Q(y_r) = \sum_{i=1}^n \sum_{k=-\infty}^\infty \bar{a}_{ir-k} V^k(x_i), \quad r = 1, \cdots, n.$$

From (2) we obtain

$$||Q(y_r)||^2 = \sum_{i=1}^n \sum_{k=-\infty}^\infty |a_{ir-k}|^2 = 1, r = 1, \cdots, n.$$

Therefore, $||y_r|| = ||Q(y_r)||$ which implies $y_r = Q(y_r) \in \sum_{k=-\infty}^{\infty} V^k(X)$. Thus $\sum_{k=-\infty}^{\infty} V^k(X) = \sum_{k=-\infty}^{\infty} V^k(Y)$. Q.E.D.

Theorem 1 is clearly false if $\dim(Y) = \infty$, but the following corollary, due to Halmos [1, Lemma 4], is true for all dimensions.

COROLLARY. Let X and Y be wandering subspaces for a unitary operator V such that $\sum_{k=-\infty}^{\infty} V^k(X) \subseteq \sum_{k=-\infty}^{\infty} V^k(Y)$. Then dim(X) $\leq \dim(Y)$.

PROOF. If the dimension of Y is not finite then, since $X \subseteq \sum_{k=-\infty}^{\infty} V^k(Y)$, $\dim(X) \leq \dim(\sum_{k=-\infty}^{\infty} V^k(Y)) = \dim(Y)$ as desired. Next let $\dim(Y) = n < \infty$ and suppose $\dim(X) > n$. If x_1, \dots, x_{n+1} are orthonormal vectors in X and if \tilde{X} is the space spanned by x_1, \dots, x_n , then $\sum_{k=-\infty}^{\infty} V^k(\tilde{X}) = \sum_{k=-\infty}^{\infty} V^k(Y)$ by Theorem 1. Thus $x_{n+1} \in (\sum_{k=-\infty}^{\infty} V^k(\tilde{X}))^{\perp} \cap (\sum_{k=-\infty}^{\infty} V^k(Y)) = \{0\}$ [which contradicts the assumption that x_{n+1} is normal. Thus $\dim(X) \leq n$. Q.E.D.

234

[April

It follows from the corollary, of course, that if $\sum_{k=-\infty}^{\infty} V^k(X) = \sum_{k=-\infty}^{\infty} V^k(Y)$, then dim $(X) = \dim(Y)$. The final theorem shows that finite-dimensional wandering subspace may be increased to the maximum.

THEOREM 2. Let X and Y be wandering subspaces for a unitary operator V such that:

(a)
$$\sum_{k=-\infty}^{\infty} V^k(X) \subseteq \sum_{k=-\infty}^{\infty} V^k(Y)$$
,
(b) dim $(Y) < \infty$.

Then there exists a wandering subspace \tilde{X} such that:

(1) $X \subseteq \tilde{X}$, (2) $\sum_{k=-\infty}^{\infty} V^k(\tilde{X}) = \sum_{k=-\infty}^{\infty} V^k(Y)$.

PROOF. Let x_1, \dots, x_m and y_1, \dots, y_n be orthonormal bases for X and Y, respectively, and suppose m < n. As before, let

$$x_{i} = \sum_{r=1}^{n} \sum_{k=-\infty}^{\infty} a_{ir \ k} V^{k}(y_{r}),$$
$$f_{ir}(\theta) \sim \sum_{k=-\infty}^{\infty} a_{ir \ k} e^{ik\theta}, \quad i = 1, \cdots, m, r = 1, \cdots, n.$$

Then (cf. (1')) $f_i(\theta) = (f_{i1}(\theta), \dots, f_{in}(\theta)), i = 1, \dots, m$, are orthonormal vectors in C^n for almost all θ . We can extend this to an orthonormal basis of C^n , $(f_1(\theta), \dots, f_n(\theta))$, and this can be done measurably. (E.g., apply the Gram-Schmidt process to $(f_1(\theta), \dots, f_m(\theta), e_1, \dots, e_n)$, where $e_i = (\delta_{ij})_{j=1}^n$.) Since $f_i(\theta)$ is normal almost everywhere, its component functions $f_{ir}(\cdot)$ are in $L_2(0, 2\pi)$. Let, therefore,

$$f_{ir}(\theta) \sim \sum_{k=-\infty}^{\infty} a_{ir\ k} e^{ik\theta}, \quad i,\ r=1,\ \cdots,\ n.$$

Then, as in the proof of Theorem 1, the space \tilde{X} spanned by the orthonormal vectors

$$x_i = \sum_{r=1}^n \sum_{k=-\infty}^\infty a_{ir\ k} V^k(y_r), \quad i = 1, \cdots, n,$$

has the desired properties. Q.E.D.

The following example shows that the assumption $\dim(Y) < \infty$ is essential for Theorem 2.

EXAMPLE. Let y_1, y_2, \cdots be a complete orthonormal set of vectors for a wandering subspace Y of a unitary operator V. Let $l_2 = \{a = (a_1, a_2, \cdots): \sum_{k=1}^{\infty} |a_k|^2 < \infty, a_k \text{ complex numbers}\}, \text{ and let}$ J. B. ROBERTSON

$$f_{ir}(\theta) = \begin{cases} \delta_{ir} & \text{if } 0 \leq \theta \leq \pi \\ \delta_{i+1r} & \text{if } \pi < \theta \leq 2\pi \end{cases} \sim \sum_{k=-\infty}^{\infty} a_{ir \ k} e^{ik\theta}.$$

Then $f_i(\theta) = (f_{ir}(\theta))_{r=1}^{\infty}$ for $0 \leq \theta \leq 2\pi$ are orthonormal vectors in l_2 . Thus the space X spanned by the orthonormal vectors

$$x_i = \sum_{r=1}^{\infty} \sum_{k=-\infty}^{\infty} a_{ir \ k} V^k(y_r), \quad i = 1, \ 2, \ \cdots,$$

is a wandering subspace contained in $\sum_{k=-\infty}^{\infty} V^k(Y)$. X cannot be extended as in Theorem 2 since this would imply the existence of a function $f: [0, 2\pi] \rightarrow l_2$ such that $(f(\theta), f(\theta)) = 1$ almost everywhere and that $(f(\theta), f_i(\theta)) = 0, i = 1, 2, \cdots$, almost everywhere. But $f_i(\theta)$, $i = 1, 2, \cdots$, span l_2 for θ between 0 and π . On the other hand, if

$$f_r(\theta) = \begin{cases} 0 & \text{if } 0 \leq \theta \leq \pi \\ \delta_{1r} & \text{if } \pi < \theta \leq 2\pi \end{cases} \sim \sum_{k=-\infty}^{\infty} b_{rk} e^{ik\theta},$$
$$f(\theta) = (f_r(\theta))_{r=1}^{\infty},$$

then

$$x = \sum_{r=1}^{\infty} \sum_{k=-\infty}^{\infty} b_{rk} V^{k}(y_{r}) \in \sum_{k=-\infty}^{\infty} V^{k}(Y)$$

is clearly orthogonal to $\sum_{k=-\infty}^{\infty} V^k(X)$, since $f(\theta)$ is orthogonal to $f_r(\theta)$, $r=1, 2, \cdots$. Thus $\sum_{k=-\infty}^{\infty} V^k(X) \neq \sum_{k=-\infty}^{\infty} V^k(Y)$.

Reference

1. P. Halmos, Shifts on Hilbert space, J. Reine Angew. Math. 208 (1961), 102-112.

Indiana University and Cornell University

236