
A BOUND ON DETERMINANTS

WILLIAM M.  FRANK

The following result bounds the determinant of an arbitrary matrix

by the determinant of a positive semi-definite matrix. It is well known

that in the case of (psd) positive semidefinite matrices of order «, a

geometrical bound Mn can be found for the determinant which con-

stitutes a considerable improvement over the general Hadamard

bound ~«n,! for arbitrary matrices. The result is not practically

applicable in all cases but is of particular value in studying the rate

of convergence of Fredholm expansions for certain types of kernels.

But for the broader class of matrices covered by this theorem, no

improvement on classical estimates of special types of matrices is

found.

Theorem. If the nXn matrix A is a linear combination of hermitian

positive semidefinite (hpsd) matrices A¡ (i=í, 2, • • • , m), i.e.,

m

(1) A = J^píAí,
»=i

where the pi are complex constants, then

/ m

(2) |det¿|   ádetí E U<U<
\ »=1

Proof. The proof is by induction on m. We first prove it for the

case m = 2. Without loss of generality we set pi= 1, p2=p.

Let U diagonalize A\, i.e.,

(3) UAiU-1 = D (diagonal).

The matrix

(4) N = UA2U-\

is still hpsd

(5) det A - det(Z> + pN).

det(D+pN) has the following expansion as a polynomial in p:

(6) det(D + pN)= X>    E    NaD:,
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where S(n; s) is the set of unordered sequences of length 5 from the

integers 1, 2, ■ ■ • ,n. Na is the principal minor of N formed from the

rows and columns numbered ai, ai, ■ ■ ■ , a„ i.e.,

(7) Na =

N        N•*■ * ai«l      x* c*li*2

■* » 0¡2al 02^2

TNT" 7V1 » aäoti      -ít ä««2

■ff.

•ff.

ff«

and is 1 for the case 5 = 0. D'a is the product of all the diagonal ele-

ments of D excluding the elements 2?01.„ Da,ai, • • • , -Da,«,- By virtue

of the positive semidefinite character of D and N

(8) Na fe 0,        7J«' £ 0,

for all aG5(»i; s). From equations (5), (6),

n

| det i4 |  =  | det(Z) + pN)\  í j¡

(9)

m |*    E    ff.A.'
«=0 oeS(n;>)

= det(D + | m | ff) = det[U(Ai + \ p\ At)U~l\

= det(4i+ UI Ai),

which proves the theorem for the case m = 2.

Assume the theorem to be true for all values of m = M. Again take

pi = 1, and consider

M+l

(10) det A = det[  E pjAj ) = det(A + A'),
/ M+l \

where

(11)

M+l

A' = E NAj.
i-2

Let Î7 be the matrix which diagonalizes A i, and define

(12)    UAiU-1 = D,    UAjU-1 = N">,       (j ^ 2),    C/^'C/-1 = N;

(13) | det A |  = | det(Z) + ff) |  = E    E    W | ff» I •
«-0 aeS(n;>)

ffa, a principal minor of the matrix N, is the determinant of a matrix

N(a) which is itself of the form

(14)
Ai)

M+l

ff (a)   =    E M,ff (a),
y-2
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where A7^ is the corresponding minor matrix of NU). Since the 2V(,)

are hpsd the induction hypothesis for the case m = M can be applied

to iV(„) of equation (7) :

(M+l \

E k|tf(->j

and

(16)

n /M+l \

det A |   ̂  E     E    D: det(  E  I My| #<»> )

/ M+l \ / M+l \

= det Í D + E  I Mi I N(i)) = det Í E   I My \ Ajj,

which proves the theorem for m = M+l, and, therefore, in general.

An arbitrary matrix can be expressed in the form of equation (1)

with m =4 since the hermitian and i times the antihermitian part of

an arbitrary matrix can each be expressed as a difference of two hpsd

matrices. The decomposition of a hermitian matrix A in the particu-

lar form A=Ai—A2 (Ai, A2 hpsd) is, however, not unique. The in-

equality

(17) | det A |   < detail + A2)

becomes an equality when A\ and ^42 commute. This corresponds to

Ax= U-lD+U, A2= U-W-U, where UAU~l = Dis diagonal and D+,

— D- are, respectively, the non-negative and nonpositive diagonal

parts of D.

That the bound in equation (17) is apt to be generous can be seen

in the case where A itself is positive semidefinite.1 Then, from well-

known properties of psd matrices,

(18) 0 ^ det A = det(Ai - A2) ^ det Ax - det A2,

and the upper bound in equation (18) is bounded by

(19) det Ax - det A2 g det Ax + det A2 g det(^i + A2),

which is the bound of equation (17). If A and B are real symmetric

matrices it is known that [l] | det (A + iB) \ > det A. From the

above theorem this is supplemented by

| det(A +iB)\   g det(A + B)

1 I am indebted to Dr. F. Metcalf of the Institute for Fluid Dynamics of the

University of Maryland for this observation.
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NOTE ON DIFFERENTIAL OPERATORS WITH
A PURELY CONTINUOUS SPECTRUM

F. ODEH

In [l ], Kreith gave an example of a Sturm-Liouville operator with

positive coefficients,

Id/        du\
Lu =-1 p(x) — ) + q(x)u,.      0 =

r (x)   dx \ dx)
X <  oo,

«(0) = 0,

which has a purely continuous spectrum. The novelty of the example

lies in the relatively weak assumptions on the potential q. Thus, in

the case p = r=l, one need not assume that q is integrable at infinity

—compare [2, Chapter 9, Problem 4]—but it is sufficient to assume

q to be monotonically decreasing. In this note a similar theorem is

given which holds in any number of dimensions. The proof, which

applies to Kreith's case also, shows that the nonexistence of eigen-

functions may be ascribed to two different reasons depending on the

asymptotic behavior of q(x). In one simple case it is due to the bound-

ary condition while in the other, and more important, case it is a

consequence of the behavior of q at infinity. For simplicity the proof

is restricted to the case of Schroedinger's equation in three dimensions,

defined in the exterior X of a closed smooth surface T. Hence, we

consider the eigenvalue problem,

(la) Lu = — A« + qu = Xu,

subject to the boundary conditions
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