UNIQUE FACTORIZATION IN A PRINCIPAL RIGHT IDEAL DOMAIN¹

R. E. JOHNSON

An integral domain with unity in which every right ideal is principal is called a pri-domain. The classical example of a pri-domain is the polynomial domain $F[x] = \{ \sum x^i a_i | a_i \in F \}$ over a division ring F, where multiplication is defined by $ax = xa^{\sigma} + a^{\delta}$, $a \in F$, with σ a monomorphism and δ an associated derivation of F (see Ore, [1]).

In what follows, R is a pri-domain and L is its lattice of right ideals. Each $a \in R$ has dimension, dim a, defined to be the length of the longest chain in the interval [aR, R] of L. The elements of dimension 1 are the primes of R. Although dim a is conceivably infinite? for some nonzero $a \in R$, we are only interested in those elements for which dim $a < \infty$. For convenience, let $R^* = \{a \in R \mid a \neq 0, 0 < \dim a < \infty\}$.

Each $a \in \mathbb{R}^*$ may be expressed as a product of primes, $a = p_1 \cdot p_2 \cdot \cdots \cdot p_n$, where $n = \dim a$. For if p_1 is a prime left factor of a and $a = p_1 a_1$, then $R - a_1 R \cong p_1 R - aR$ (as right R-modules) and therefore $\dim a_1 = n - 1$. The factorization now follows by induction. Elements b and c of R^* are said to be similar, $b \sim c$, if $R - bR \cong R - cR$. It may be shown by the usual proof for pri- and pli-domains (see [2, p. 34]) that if $a = p_1 \cdot p_2 \cdot \cdots \cdot p_n = q_1 \cdot q_2 \cdot \cdots \cdot q_n$, where all p_i and q_i are primes, then there exists a permutation α of $(1, 2, \dots, n)$ such that $q_i \sim p_{\alpha(i)}$, $i = 1, 2, \dots, n$.

Whenever $a \in R$ is represented as a product $a = a_1 \cdot a_2 \cdot \cdot \cdot \cdot \cdot \cdot a_n$, then a can also be represented as a product

(1)
$$a = (a_1u_1)(u_1^{-1}a_2u_2) \cdot \cdot \cdot (u_{n-1}^{-1}a_n)$$

for any units u_1, u_2, \dots, u_{n-1} of R. Let us call a factorization $a = a_1 \cdot a_2 \cdot \dots \cdot a_n$ of a as a product of elements of a stated type unique if every other representation of a as a product of elements of the stated type has the form (1) above. It is the purpose of this note to describe a particular type of unique factorization that occurs in R.

Associated with each $a \in \mathbb{R}^*$ is the subset L_a of L defined by

$$L_a = \{ B \in [aR, R] \mid [aR, R] = [aR, B] \cup [B, R] \}.$$

By a lattice-theoretic argument, it is easily demonstrated that L_a is

Received by the editors, December 18, 1963.

¹ Research supported by NSF grant G24155.

² No example is known to the author where dim $a = \infty$.

a finite chain $aR = B_k < B_{k-1} < \cdots < B_0 = R$ and that

$$[aR, R] = [B_k, B_{k-1}] \cup [B_{k-1}, B_{k-2}] \cup \cdots \cup [B_1, B_0].$$

Let us call $a \in R^*$ simple if $L_a = \{aR, R\}$. Clearly every prime is simple, and if a is simple and $b \sim a$, then b is also simple. If R is commutative, then $a \in R^*$ is simple if and only if either a is prime or a has two dissimilar prime factors.

If $a \in \mathbb{R}^*$ and $L_a = \{B_0, B_1, \dots, B_k\}$ as above, with $B_i = b_i R$ and $b_i = b_{i-1}a_i$, $i = 1, 2, \dots, k$, $b_0 = 1$ and $b_k = a$, then $B_{i-1} - B_i \cong R - a_i R$, $i = 1, 2, \dots, k$. Since the lattice $[B_i, B_{i-1}]$ is not a union of two proper intervals of L, evidently each a_i is simple. Thus, $a = a_1 \cdot a_2 \cdot \dots \cdot a_k$ where each a_i is simple but no element of the form $a_i \cdot a_{i+1} \cdot \dots \cdot a_j$, i < j, is simple. It is easy to see that this is the unique factorization of a associated with the lattice L_a .

Let $a \in R^*$ and $a = a_1 \cdot a_2 \cdot \cdots \cdot a_k$ be the unique factorization of a associated with L_a as above. If $a_1 = g \cdot h$ for some g, $h \in R^*$ and $c = h \cdot a_2 \cdot \cdots \cdot a_k$, then gc = a. Since $[cR, R] \cong [aR, gR]$ and $[aR, gR] > [aR, a_1R]$, evidently $[cR, R] = [cR, c_{k-1}R] \cup [c_{k-1}R, c_{k-2}R] \cup \cdots \cup [c_1R, R]$ where $c_i = h \cdot a_2 \cdot \cdots \cdot a_i$, i > 1, and $c_1 = h$. Each of the intervals $[c_iR, c_{i-1}R]$ is irreducible (i.e., not the union of two intervals) with the possible exception of $[c_1R, R]$. Hence, the factorization of c associated with L_c has the form $c = h_1 \cdot \cdots \cdot h_r \cdot a_2 \cdot \cdots \cdot a_k$ where $h = h_1 \cdot \cdots \cdot h_r$ is the factorization of h associated with L_h .

A factorization of $a \in \mathbb{R}^*$ into simple elements $a = a_1 \cdot a_2 \cdot \cdots \cdot a_k$ is called *irredundant* if no sub-product $a_i \cdot a_{i+1} \cdot \cdots \cdot a_j$, i < j, of a is simple. The main result of the paper is as follows.

THEOREM. Each $a \in \mathbb{R}^*$ has a unique irredundant factorization into simple elements.

PROOF. The theorem is true if dim a=1. Assume that the theorem is true for every element of R^* of dimension less than n, and let $a \in R^*$ have dimension n>1. We know that a has an irredundant factorization into simple elements associated with L_a , say $a=a_1 \cdot a_2 \cdot \cdots \cdot a_k$. If k=1, then the factorization clearly is unique, so let us assume that k>1. Also assume that $a=c_1 \cdot c_2 \cdot \cdots \cdot c_m$, m>1, is an irredundant factorization of a into simple elements.

Since $c_1R \in [aR, R] = [aR, a_1R] \cup [a_1R, R]$, either $c_1R < a_1R$ or $c_1R \ge a_1R$. If $c_1R < a_1R$ then $[c_1R, R] = [c_1R, a_1R] \cup [a_1R, R]$ contrary to the simplicity of c_1 . Hence, $c_1R \ge a_1R$. If $c_1R = a_1R$ then a has unique factorization by induction.

Finally, if $c_1R > a_1R$ then $a_1 = c_1h$ for some $h \in R^*$ and $b = c_2 \cdot \cdot \cdot \cdot \cdot c_m = h \cdot a_2 \cdot \cdot \cdot \cdot \cdot \cdot a_k$. By a previous remark, the irredundant factorization

of b into simple elements associated with L_b has the form $b = h_1 \cdot \cdot \cdot \cdot \cdot h_r \cdot a_2 \cdot \cdot \cdot \cdot \cdot \cdot a_k$. Since dim b < n, this must be the unique factorization of b into simple elements. Therefore, $c_2 \cdot \cdot \cdot \cdot \cdot \cdot c_{r+1} = h_1 \cdot \cdot \cdot \cdot \cdot \cdot h_r \cdot u$ for some unit u. However, then $c_1 \cdot c_2 \cdot \cdot \cdot \cdot \cdot \cdot c_{r+1} = a_1 \cdot u$ contrary to the assumption that $c_1 \cdot c_2 \cdot \cdot \cdot \cdot \cdot \cdot c_{r+1}$ is not simple. This proves the theorem.

Let us call $a \in \mathbb{R}^*$ primary if [aR, R] is a chain. The above theorem has the following form for primary elements.

COROLLARY. An element a of R^* is primary if and only if a has a unique representation as a product of primes.

If R is commutative, then our definition of primary agrees with the usual one; $a \in R^*$ is primary if $a = p^n u$ for some prime p and some unit u.

Our results on simple elements of R^* are too fragmentary to present at this time.

We close this note with an example. Let $F = Z_2(t)$ be a transcendental extension of the integers modulo 2, $R = F[x] = \{\sum x^i a_i | a_i \in F\}$, $F \rightarrow {}^{\sigma}F$ be the monomorphism $a^{\sigma} = a^2$, and $\delta = 0$. Thus, $ax = xa^2$ for every $a \in F$. The ring R is a pri-domain, but not a pli-domain. An unusual feature of R is that $x+a \sim x+b$ for all nonzero $a, b \in F$. The following statements can be verified by some elementary computations. $x^2 + a$ is prime if and only if $\sqrt[3]{a} \notin F$; $x^2 + t^n$ is prime if and only if (n, 3) = 1; if $a = b^3 \neq 0$, then $x^2 + a$ has the unique factorization $x^2 + a = (x+b)(x+a/b)$; thus, $x^2 + a$ is always primary; $(x+a)^2$ is not primary if $a + ab = b^2 \neq 0$ for some $b \in F$, for then $(x + a)^2 = (x+b)(x+a^2/b)$; $x^2 + xt$ is primary; $(x+1)(x^2+t)$ is primary.

BIBLIOGRAPHY

- 1. O. Ore, Theory of non-commutative polynomials, Ann. Math. 34 (1933), 480-508.
- 2. N. Jacobson, *The theory of rings*, Math Surveys No. 2, Amer. Math. Soc., Providence, R. I., 1943.

University of Rochester