A PROPERTY OF FINITE SIMPLE NON-ABELIAN GROUPS

W. D. MAURER AND JOHN L. RHODES¹

It has been proved by Fröhlich [1] that the collection of inner automorphisms of a finite simple non-abelian group G generates the group (under pointwise multiplication) of all functions from G into G leaving the identity fixed, and, conversely, that the only finite groups with this property are the simple non-abelian groups, Z_2 , and [e]. It follows directly that the inner automorphisms and the constant functions of a simple non-abelian group into itself generate the entire group of functions from G into G. The purpose of this note is to prove the following generalization of this theorem.

THEOREM. Let G be a finite group of order $g \ge 3$, and let A be a finite set of order $a \ge 3$. Let F(A, G) be the group of all functions $f: A \rightarrow G$ under the operation $(f_1 \cdot f_2)(a) = f_1(a) \cdot f_2(a)$, and let H be a subgroup of F(A, G)such that:

(a) $f^{g} \in H$, where $f^{g}(a) = g$, all $a \in A$, for each $g \in G$;

(b) if x, $y \in A$, there exists $f \in H$ with $f(x) \neq f(y)$.

Then H is necessarily equal to F(A, G) if and only if G is simple nonabelian.

PROOF. Let G be simple non-abelian. A *j*-tuple (g_1, \dots, g_j) of elements $g_i \in G, j \leq a$, is called accessible if for every *j*-tuple (a_1, \dots, a_j) of distinct members of A there exists $f \in H$ such that $f(a_i) = g_i$, $1 \leq i \leq j$. We prove all *j*-tuples (in particular, all \mathfrak{a} -tuples) accessible by induction on j. All 1-tuples are accessible, by (a) above. It suffices to show that all *j*-tuples of the form (g, e, \dots, e) are accessible, since H is a subgroup. Let $\alpha = (a_1, \dots, a_j)$ be a particular *j*-tuple of distinct members of A, and let $G_{\alpha} \subseteq G$ be the set of all $g \in G$ for which there exists $f \in H$, $f(a_1) = g$, $f(a_i) = e$, $2 \leq i \leq j$; since H is a subgroup of F(A, G), G_{α} is a subgroup of G, and, in fact, it is seen to be a normal subgroup by considering $f^x \cdot f \cdot f^{x^{-1}}$. Since G is simple, it suffices to show that $G_{\alpha} \neq [e]$. For j=2, this follows from (b) above; if $f(a_1)$ $\neq f(a_2)$, then $f' = f \cdot f^z$, where $z = (f(a_2))^{-1}$, satisfies $f'(a_1) \neq e$, $f'(a_2) = e$. Now assume $j \ge 3$. Let $g_1, g_2 \in G$ be such that $g_1g_2 \neq g_2g_1$. Such elements exist because G is non-abelian. Since all (j-1)-tuples are accessible, there exist $f_1, f_2 \in H$ such that the values of f_1 and f_2 on the elements

Received by the editors February 12, 1963 and, in revised form, January 3, 1964.

¹ The second-named author proved the corollary presented here by a somewhat complicated method assuming [1]. The first author obtained the present proof.

 a_i are given by the following diagram:

 $a = a_1 \quad a_2 \quad a_3 \quad a_4 \cdots a_n$ $f_1(a) = g_1 \quad e \quad x \quad e \quad e$ $f_2(a) = g_2 \quad y \quad e \quad e \quad e$

where x and y are (unspecified) elements of G. Then the values of $f_3 = f_1^{-1} \cdot f_2^{-1} \cdot f_1 \cdot f_2$ on the elements a_i are given by

$$a = a_1 \quad a_2 \quad a_3 \quad a_4 \cdots a_n$$

$$f_3(a) = [g_1g_2] \quad e \quad e \quad e \quad e,$$

where $[g_1g_2] = g_1^{-1}g_2^{-1}g_1g_2$, which shows that $[g_1g_2] \in G_{\alpha}$ and, therefore, $G_{\alpha} \neq [e]$.

Conversely, suppose that G is either nonsimple or abelian. If G has a proper nontrivial normal subgroup N, then

$$H = \{f \colon A \to G \mid f(x)f(y)^{-1} \in N, \text{ all } x, y \in A\}$$

satisfies the requirements (a) and (b) of the theorem, and is a proper subset of F(A, G). To prove H a subgroup, we note that if $f(x)f(y)^{-1} = h \in N$, $g(x)g(y)^{-1} = k \in N$, then

$$\begin{aligned} f(x)g(x)(f(y)g(y))^{-1} &= f(x)(g(x)g(y)^{-1})f(y)^{-1} = f(x)kf(y)^{-1} \\ &= f(x)kf(x)^{-1}f(x)f(y)^{-1} = f(x)kf(x)^{-1}h, \end{aligned}$$

and this is in N since $f(x)kf(x)^{-1}$ is a conjugate of k.

If G is abelian, then the order of the product of two subgroups of the abelian group F(A, G) is less than or equal to the product of the orders. Hence, let $a \leq g$, let G_1 be the subgroup consisting of the functions f^g , and let G_2 be the cyclic subgroup generated by any function f such that $f(a_1) \neq f(a_2)$ for all $a_1, a_2 \in A$. Then we may set $H = G_1 \cdot G_2$; the order of G_1 is g, and the order of G_2 is not greater than g, since $g_i^g = e$ for all $g_i \in G$. Thus the order of H is not greater than g^2 , whereas the order of F(A, G) is $g^a, a \geq 3$. If $a > g, A' \subset A$ is of order $g \geq 3$, and $H' \subset F(A', G)$ is a proper subgroup satisfying conditions (a) and (b) of the theorem, then the set H of functions whose restrictions to A' are in H' also satisfies conditions (a) and (b) and is also a proper subgroup. This completes the proof of the theorem.

If we set A = G, we obtain that the constant functions and the identity inner automorphism (which certainly satisfies condition (b) of the theorem) of a simple non-abelian group generate the entire group of functions from G into G. This generalizes Fröhlich's theorem mentioned above; in fact, from this, Fröhlich's theorem follows immediately. The collection $G_{\mathbf{x}}$ of constant functions on G normalizes

the group G_I of pointwise products of inner automorphisms of G. If G_1 is the set of all functions on G fixing the identity, then $G_I = G_1$ if and only if the group generated by G_I and G_K is F(G, G). Thus, if G is simple non-abelian, $G_I = G_1$.

If we set $A = G^n$, the direct product of G taken with itself n times, we obtain a result useful in the algebraic theory of machines. Let X_n be a set of n elements, and let a_1, \dots, a_k be elements of $G \cup X_n$ (disjoint union) for some finite group G. Then the *product function of n* variables mapping from G^n into G associated with (a_1, \dots, a_k) is defined as follows. If $X_n = [x_1, \dots, x_n]$, then $f(g_1, \dots, g_n) = b_1 \dots b_k$, where

$$b_i = a_i$$
 for $a_i \in G$,
 $b_i = g_j$ for $a_i = x_j \in X_n$

Thus we may associate a product function $f: G^n \to G$ with each sequence of elements of $G \cup X_n$. This correspondence is a homomorphism of the free semigroup of finite sequences of elements of $G \cup X_n$ into the group of functions from G^n into G under pointwise multiplication. Its image, as a subsemigroup of a finite group, is itself a group $F_n(G)$. Now the following result holds.

COROLLARY. Every function $f: G^n \rightarrow G$, $n \ge 1$, belongs to $F_n(G)$ if and only if G is a simple non-abelian group (or G = [e]).

PROOF. For G = [e] the theorem is obvious. It is easy to verify that $F_1(G)$ is generated by the inner automorphisms and the constant functions. Thus if $F_1(G)$ consists of all functions we have seen that G_I , the group of pointwise products of inner automorphism, consists of all functions fixing the identity and thus G can possess no proper nontrivial subgroups. In this situation G is simple non-abelian or $G = Z_p$, the integers modulo the prime p. However, $F_n(Z_p)$ is seen to have order strictly less than the order of $F(Z_p^n, Z_p)$ for all $n \ge 2$ by performing a trivial calculation.

Now let G be simple non-abelian. The constant functions belong to $F_n(G)$ since they correspond to the sequences (g_i) of length 1. If (g_1, \dots, g_n) and (g'_1, \dots, g'_n) are distinct elements of G^n , there exists an index *i* for which $g_i \neq g'_i$, and the product function corresponding to the sequence (x_i) of length 1 satisfies condition (b) for this pair of elements of G^n . The corollary now follows immediately from the theorem.

BIBLIOGRAPHY

1. A. Fröhlich, The near-ring generated by the inner automorphisms of a finite simple group, J. London Math. Soc. 33 (1958), 95-107.

UNIVERSITY OF CALIFORNIA, BERKELEY