PERSPECTIVITY IN PROJECTION LATTICES1

PETER A. FILLMORE

Let A be a w^* -algebra and L its projection lattice. It is well known [3] that projections perspective in L are linked by a partial isometry in A, and that these two notions coincide precisely when the algebra A is finite. We show in this paper that, in any w^* -algebra, perspectivity enjoys virtually every property, other than additivity, of the relation \sim of partial isometry equivalence. These properties are established by means of

THEOREM 1. Projections p, $q \in L$ are perspective in L if and only if they are unitarily equivalent in A.

In one direction this is immediate, for if $r \in L$ is a common complement for p and q, then r' = 1 - r is a common complement for p' and q', $p \sim q$, $p' \sim q'$, and p and q are unitarily equivalent.

We begin the converse with two lemmas (valid in any orthomodular lattice L) concerning the additivity of perspectivity. Recall that an orthomodular lattice is a lattice with an orthocomplementation $a\rightarrow a'$ such that $b=a+a'\cap b$ whenever $a\leq b$. (The symbol + will be used for the lattice join if the summands are orthogonal.) It is easily seen that this condition is equivalent to the following:

$$a \le c$$
 implies $(a+b) \cap c = a+b \cap c$.

LEMMA 1. If a, b, c, $d \in L$ and $a \cup c \perp b \cup d$, then $(a+b) \cap (c+d) = a \cap c + b \cap d$.

To prove this one can imitate the proof in [5, Theorem 1.2], observing that our assumption permits replacement of the modular law by the restricted version of it given above.

LEMMA 2. If a, b, c, d, e, $f \in L$, a and b are perspective in [0, e], c and d are perspective in [0, f], and $e \perp f$, then a + c and b + d are perspective in [0, e + f], as are a + f and b + f.

PROOF. Let x be a common complement for a and b in [0, e], y for c and d in [0, f], and put z = x + y. Plainly, $a \cup c \cup z = e + f = b \cup d \cup z$, and, since $a \cup x \perp c \cup y$, we have

$$(a \cup c) \cap z = (a+c) \cap (x+y) = a \cap x + c \cap y = 0$$

Received by the editors February 7, 1964.

¹ This work was supported by a grant from the National Science Foundation.

by Lemma 1. Similarly $(b \cup d) \cap z = 0$, and the second part of the lemma follows in an analogous fashion.

For the remainder of the paper L will denote the projection lattice of a w^* -algebra on a Hilbert space H. We are indebted to Professors Halperin and Kaplansky for simplifications of several of the subsequent proofs.

LEMMA 3. If p, $q \in L$, $p \cap q = 0$, and $p \sim q$, then p and q are perspective in $[0, p \cup q]$.

PROOF. Following [2; p. 9], if $u \in A$ implements the equivalence of p and q and λ is a complex number with $|\lambda| < 1$, then the range projection of $(1+\lambda u)p$ has the required properties.

LEMMA 4. If p, q, $r \in L$ satisfy $q \sim p \leq q$ and $p \lesssim r \leq q'$, then p and q are perspective in [0, q+r].

PROOF. $p \sim s \le r$, and let u, v be partial isometries in A with $u^*u = q$, $uu^* = s$, $v^*v = q$, and $vv^* = p$. For $n \ge 1$ denote by c_n the range projection of $(v^n + (1/n)(1 + uv^n))(q - p)$, and let $c = Uc_n$. Of course $c \in L$, and it will be shown that c is a common complement for p and q in $[0, p \cup c]$ by showing $(1) q \le p \cup c$ and $(2) q \cap c = 0$.

Let $e \in L$, $e \perp p \cup c$. Then, for each $n \ge 1$, $e(v^n + (1/n)(1 + uv^n))(q - p) = 0$, whence $e(1 + uv^n)(q - p) = 0$ and so $e(q - p) = -(1/n)\sum_{k=1}^n euv^k(q-p)$. For each $\alpha \in H$ we have

$$\left\|e(q-p)\alpha\right\| = \frac{1}{n}\left\|\sum_{k=1}^n euv^k(q-p)\alpha\right\| \leq \frac{1}{n}\sqrt{n}\|(q-p)\alpha\|,$$

so that e(q-p)=0, $e\perp q$, and $q\leq p\cup c$.

To prove (2) suppose that α is an element in the range of $q \cap c$. For any $\epsilon > 0$ there are elements α_k in the range of q - p such that

(*)
$$\left\|\alpha - \sum \left(v^k + \frac{1}{k}\left(1 + uv^k\right)\right)\alpha_k\right\| < \epsilon.$$

Hence, since $q'\alpha = 0$, we have

$$\left\|\sum \frac{1}{k} uv^k \alpha_k \right\| = \left(\sum \frac{1}{k^2} \|\alpha_k\|^2\right)^{1/2} < \epsilon.$$

Denoting by p_k the range projection of $v^k(q-p)$, (*) implies $\|p_k\alpha - v^k\alpha_k\|$ $<\epsilon$, and, therefore,

$$||p_k\alpha|| \le \epsilon + ||v^k\alpha|| \le \epsilon + k\epsilon.$$

Since ϵ is arbitrary, $p_k \alpha = 0$. Again $(\sum p_k)\alpha = p\alpha$, for, by (*),

 $\|p\alpha - \sum v^k \alpha_k\| < \epsilon$ and $\|(\sum p_k)\alpha - \sum v^k \alpha_k\| < \epsilon$. Thus $p\alpha = 0$, whence $\|\sum v^k \alpha_k\| = (\sum \|\alpha_k\|^2)^{1/2} < \epsilon$. Finally, $\|(q-p)\alpha - \sum (1/k)\alpha_k\| < \epsilon$ by (*), so

$$\|(q-p)\alpha\| \leq \epsilon + \left\|\sum \frac{1}{k} \alpha_k\right\| \leq \epsilon + \left\lceil (\sum \|\alpha_k\|^2) \left(\sum \frac{1}{k^2}\right) \right\rceil^{1/2} \leq K\epsilon,$$

K fixed. Therefore, $q\alpha = 0$, $\alpha = 0$, and $q \cap c = 0$.

It is readily verified that $p \cup c \le q+r$, and the proof is completed by enlarging c to a common complement for p and q in [0, q+r].

LEMMA 5. If a, b, $c \in L$ satisfy $a+b+c\sim a+b$, then there exist c_1 , $c_2 \in L$ such that $c=c_1+c_2$, $a+c_1\sim a$, and $b+c_2\sim b$.

PROOF. Split the algebra into two summands on which, respectively, $a \lesssim b$ and $b \lesssim a$. On the first summand we can assume that b is purely infinite, for b finite implies a finite, a+b finite, and c=0. Hence $b=b_1+b_2$ with $b \sim b_1 \sim b_2$, so

$$b+c \leq a+b+c \sim a+b \leq b_1+b_2=b$$

and we have $b+c\sim b$. On the summand with $b\stackrel{\checkmark}{\sim} a$ we have, similarly, $a+c\sim a$.

LEMMA 6. If a, b, $x \in L$ satisfy $a \le b$ and $a \le x \le b$, then there exists $y \in L$ such that $y \sim x$ and $a \le y \le b$.

PROOF. Let x=c+u with $a \sim c$, so that $c+u \preceq a + (b-a)$. Split the algebra into two summands on which, respectively, $u \preceq b-a$ and $b-a \preceq u$. On the first we have $u \sim w \leq b-a$, so the element y=a+w meets our requirements. If $b-a \preceq u$ we have $b=a+(b-a) \preceq c+u=x \preceq b$, so $b \sim x$ and y=b serves.

PROOF OF THEOREM 1. Let $p, q \in L$ be unitarily equivalent. Drop first to a direct summand in which $p \cap q \stackrel{<}{\sim} p' \cap q'$, and split this into two further summands in which $p-p \cap q \stackrel{<}{\sim} q-p \cap q$ and $q-p \cap q \stackrel{<}{\sim} p-p \cap q$, respectively. In the first of these we wish to locate $s \stackrel{<}{=} p' \cap q$ such that $p-p \cap q \sim q-p \cap q-s$. To this end we note that the elements $a=p-p \cap q-p \cap q'$ and $b=q-p \cap q-p' \cap q$ satisfy $a \cap b' = a' \cap b = 0$. Hence b' is a common complement for a and b, $a \sim b$, and

$$q - p \cap q - p' \cap q \leq p - p \cap q \leq q - p \cap q.$$

Applying Lemma 6 there exists $r \sim p - p \cap q$ such that

$$q - p \cap q - p' \cap q \leq r \leq q - p \cap q$$

and letting $r+s=q-p\cap q$ we have $s \le p' \cap q$ and $p-p\cap q \sim q-p$ $\cap q-s$ as desired. Now

$$r + p \cap q \sim (p - p \cap q) + p \cap q \sim q = r + p \cap q + s$$

so, by Lemma 5, we have $s=s_1+s_2$ with $r+s_1 \sim r$ and $p \cap q+s_2 \sim p \cap q$. Hence $p-p \cap q \sim r+s_1$, and, since these are disjoint, they are perspective in their union e by Lemma 3. Moreover, since $p \cap q \leq p' \cap q'$, Lemma 4 implies that $p \cap q$ and $p \cap q+s_2$ are perspective in $f=p \cap q+s_2+p' \cap q'$. Our choice of s is such that e and f are orthogonal, and thus Lemma 2 permits addition of the above perspectivities, thereby giving the perspectivity of p and q.

We proceed similarly in the summand in which $q-p \cap q \lesssim p-p \cap q$. In the summand in which $p' \cap q' \lesssim p \cap q$ we use the fact that p' and q' are unitarily equivalent to establish as above their perspectivity. But this immediately implies that of p and q, and a final addition of perspectivities via Lemma 2 completes the proof.

COROLLARY. Perspectivity is transitive in the projection lattice of a w*-algebra.

THEOREM 2 (CANTOR-SCHROEDER-BERNSTEIN). Let L be the projection lattice of a w^* -algebra. If p, $q \in L$ are each perspective to a subprojection of the other, then they are perspective.

PROOF. By Theorem 1 we need only prove the statement with "perspective" replaced by "unitarily equivalent." We have $p \lesssim q$ and $q \lesssim p$, and so $p \sim q$. But also p' and q' are each unitarily equivalent to a subprojection of the other, so that $p' \sim q'$. Therefore, p and q are unitarily equivalent.

Our next result is an immediate consequence of Topping's results on weakly closed Jordan algebras of self-adjoint operators [6]. However, in this context, a simpler direct proof is available.

THEOREM 3 (GENERALIZED COMPARABILITY). Let L be the projection lattice of a w^* -algebra A. For any p, $q \in L$ there is a central projection e of A such that ep is perspective to a subprojection of eq and e'q to a subprojection of e'p.

PROOF. There is a central projection e such that $p-p \cap q \leq q-p \cap q$ on e and $q-p \cap q \leq p-p \cap q$ on e'. If $p-p \cap q \sim r \leq q-p \cap q$ on e then $p-p \cap q$ and r are perspective in their union by Lemma 3. Since this union is orthogonal to $p \cap q$, Lemma 2 implies that p and $p \cap q+r$ are perspective on e. Similarly on e' we have q subperspective to p.

The relation of perspectivity is, in general, not even finitely additive. However, the following improvement of Lemma 2 is valid in

any orthomodular lattice. If a_i and b_i are perspective in $[0, e_i]$ for $i \in I$ and the e_i are pairwise orthogonal, then $\sum a_i$ and $\sum b_i$ are perspective.² Again, it follows directly from Lemma 2 that if the projections $p = \sum p_i$ and $q = \sum q_i$ are orthogonal and p_i and q_i are perspective for all i, then p and q are perspective.

With regard to possible generalizations, we note that, except for Lemma 4, our arguments are nonspatial, and so apply to AW^* -algebras. More generally, very little seems to be known concerning perspectivity in orthomodular lattices. M. F. Janowitz has called our attention to an example [1, p. 21] of an orthomodular lattice in which perspectivity fails to be transitive.

BIBLIOGRAPHY

- 1. R. P. Dilworth, On complemented lattices, Tohoku Math. J. 47 (1940), 18-23.
- 2. Jacob Feldman, Isomorphisms of rings of operators, Thesis, University of Chicago, Chicago, Ill., 1954.
- 3. Irving Kaplansky, Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235-249
- 4. L. H. Loomis, The lattice theoretic background of the dimension theory of operator algebras, Mem. Amer. Math. Soc. No. 18 (1955), 36 pp.
- 5. J. von Neumann, Continuous geometry, Princeton Mathematical Series No. 25, Princeton Univ. Press, Princeton, N. J., 1960.
- 6. D. M. Topping, Jordon algebras of self-adjoint operators, Bull. Amer. Math. Soc. 71 (1965), 160-164.

University of Chicago

² This result and Lemma 1 have been obtained independently by S. S. Holland, Jr. in *Distributivity and perspectivity in orthomodular lattice*, Trans. Amer. Math. Soc. 112 (1964), 330-343.