
PERSPECTIVTTY IN PROJECTION LATTICES1

peter a. FILLMORE

Let A be a w*-algebra and L its projection lattice. It is well known

[3] that projections perspective in L are linked by a partial isometry

in A, and that these two notions coincide precisely when the algebra

A is finite. We show in this paper that, in any w*-algebra, perspec-

tivity enjoys virtually every property, other than additivity, of the

relation ~ of partial isometry equivalence. These properties are

established by means of

Theorem 1. Projections p, qQL are perspective in L if and only if

they are unitarily equivalent in A.

In one direction this is immediate, for if rQL is a common comple-

ment for p and q, then r' = 1 — r is a common complement for p' and

q', p~q, £'<~g', and p and q are unitarily equivalent.

We begin the converse with two lemmas (valid in any orthomodular

lattice L) concerning the additivity of perspectivity. Recall that an

orthomodular lattice is a lattice with an orthocomplementation a—>a'

such that b=a+a'(~\b whenever a^b. (The symbol 4- will be used

for the lattice join if the summands are orthogonal.) It is easily seen

that this condition is equivalent to the following :

o = c   implies    (a + b) f~\ c = a + b (~\ c.

Lemma 1. i/ a, b, c, dQL and a^JcU)\Jd, then (a+b)i\(c+d)
= ar\c+bC\d.

To prove this one can imitate the proof in [5, Theorem 1.2], ob-

serving that our assumption permits replacement of the modular law

by the restricted version of it given above.

Lemma 2. If a, b, c, d, e,fQL, a and b are perspective in [O, e], c and

d are perspective in [O, /], and el.f, then a+c and b+d are perspective

in [O, e+f], as are a+f and b+f.

Proof. Let x be a common complement for a and b in [O, e], y for

c and d in [O,/], and put z = x+y. Plainly, aWcVJz = e+/=oU¿Uz,

and, since oWx-LcWy, we have

(a\J c)C\z= (a + c)i\(x + y) = aC\x + ct~\y = d
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by Lemma 1. Similarly (b^Jd)i^z = 0, and the second part of the

lemma follows in an analogous fashion.

For the remainder of the paper L will denote the projection lattice

of a w*-algebra on a Hubert space H. We are indebted to Professors

Halperin and Kaplansky for simplifications of several of the subse-

quent proofs.

Lemma 3. If p, qEL, pC\q = 0, and p~q, then p and q are perspec-

tive in [0, p^Jq].

Proof. Following [2; p. 9], if u E A implements the equivalence of

p and q and X is a complex number with |x| <1, then the range

projection of (\+\u)p has the required properties.

Lemma 4. If p, q, rEL satisfy q~pûq and p^Sr^q', then p and q
are perspective in [0, q+r].

Proof. p~s 5¡ r, and let u, v he partial isometries in A with u*u = q,

uu* = s, v*v = q, and vv* = p. For w^l denote by c„ the range projec-

tion of (vn + (l/n)(l+uvn))(q—p), and let c = Ucn. Of course cEL,

and it will be shown that c is a common complement for p and q in

[0, pyJc] by showing (1) q^p^Jc and (2) qC\c = 0.

Let eEL, e±p\Jc. Then, for each »s£l, e(vn+(l/n)(l+uvn))(q — p)

= 0, whence e(l + uvn)(q — p) = 0 and so e(q — p) = — (i/n)

X^t-i euvk(q—p). For each a G 22 we have

\e(q - p)a\\ = J^, euvk(q — p)c ^~Vn\\(q
n

p)4,

so that e(q — p)=0, e±q, and q^p^Jc.

To prove (2) suppose that a is an element in the range of qP\c. For

any e>0 there are elements a* in the range of q— p such that

« « - Y,y* + —(! + u^)\ ak <  t.

Hence, since q'a = 0, we have

^7 (E f"')
1/2

< e.

Denoting by pk the range projection of vk(q — p) ,(*) implies 11 pka — vkak\ \

<e, and, therefore,

\\pkct\\ è e + ||»*a|| è « + ke.

Since   e   is   arbitrary,   pka = 0.   Again   (^,pk)a = pa,   for,   by   (*),
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\\pa— "%2vhak\\ <e and HiS^*)**- Z^*a*ll <6, Thus pa = 0, whence

IIE^IHEIkll2)1'2^- Finally, \\(q-p)a- E(l/*)o*|| <€ by
(*), so

(q - p)a\\ ^ e + Z — <**!' Œiwh(s^)
1/2

K fixed. Therefore, qa = 0, a = 0, and gHc = 0.

It is readily verified that p^Jc^q+r, and the proof is completed

by enlarging c to a common complement for p and q in [O, <z+r].

Lemma 5. // a, b, cQL satisfy a+b+c~a+b, then there exist

Ci, CiQL such that c = Ci+c2, a+Ci~a, and &+c2~&.

Proof. Split the algebra into two summands on which, respec-

tively, a^b and b^Sa. On the first summand we can assume that b is

purely infinite, for b finite implies a finite, a + b finite, and c = 0. Hence

b = bi+bi with b~bi~bi, so

b + cúa + b + c~a + b < bi + b2 = b

and we have & + c~Z>. On the summand with biav/e have, similarly,

a+c^a.

Lemma 6. // a, b, xQL satisfy a^b and a~x~b, then there exists

yQL such that y~x and a^y^b.

Proof. Let x = c+m with a~c, so that c+u¿a + (b — a). Split the

algebra into two summands on which, respectively, uib—a and

b—a~u. On the first we have w^w^b—a, so the element y = a+w

meets our requirements. If b—a~u we have b = a + (b—a)l$c+u

= x¿b, so &~x and y = b serves.

Proof of Theorem 1. Let p, qQL be unitarily equivalent. Drop

first to a direct summand in which p(~\q~ p1'C\q'', and split this into

two further summands in which p — pr\q¿ q—pf~\q and q—pC\q

i:p — p(~\q, respectively. In the first of these we wish to locate

s^.pT\q such that p—pC^q^q—pr^q — s. To this end we note that

the elements a = p—pC\q—pC\q' and b = q—pC\q—pT\q satisfy

aC\b' =a'C\b = §. Hence V is a common complement for a and b,

a~b, and

q-pr\q-p'(~\q < p - p C\ q < q — p C\ q.

Applying Lemma 6 there exists r~p—p(~\q such that

q — pC\q — p'C\q-^r^q — p C\ q
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and letting r+s = q—pC\q we have s^p'(~\q and p — pr\q~q—p

C\q —s as desired. Now

r + pr\q~(p-pr\q)+pr\q~q = r + pr\q + s

so, by Lemma 5, we have 5 = 5i-t-52 with r+Si~r and p(~\q+s2

~pf~\q. Hence p—pC\q~r+Si, and, since these are disjoint, they

are perspective in their union e by Lemma 3. Moreover, since pC\q

~p'C\q[, Lemma 4 implies that pC\q and pC\q+s2 are perspective in

f = p(~\q+s2+p'C\q'. Our choice of 5 is such that e and / are orthog-

onal, and thus Lemma 2 permits addition of the above perspectivities,

thereby giving the perspectivity of p and q.

We proceed similarly in the summand in which q — pr\qt$p—pr\q.

In the summand in which pT\q'^pi\q we use the fact that p' and q'

are unitarily equivalent to establish as above their perspectivity. But

this immediately implies that of p and q, and a final addition of per-

spectivities via Lemma 2 completes the proof.

Corollary. Perspectivity is transitive in the projection lattice of a

w*-algebra.

Theorem 2 (Cantor-Schroeder-Bernstein). Let L be the projec-

tion lattice of a w*-algebra. If p, qEL are each perspective to a sub-

projection of the other, then they are perspective.

Proof. By Theorem 1 we need only prove the statement with

"perspective" replaced by "unitarily equivalent." We have p~q and

q~p, and so p~q. But also p' and q' are each unitarily equivalent to

a subprojection of the other, so that p'~q'. Therefore, p and q are

unitarily equivalent.

Our next result is an immediate consequence of Topping's results on

weakly closed Jordan algebras of self-adjoint operators [ó]. How-

ever, in this context, a simpler direct proof is available.

Theorem 3 (Generalized comparability). Let L be the projection

lattice of a w*-algebra A. For any p, qEL there is a central projection e

of A such that ep is perspective to a subprojection of eq and e'q to a

subprojection of e'p.

Proof. There is a central projection e such that p—pr\q^q — pr\q

on e and q—pr\q¿ p—p(~\q on e'. If p—pr\q~r^q—pr\q on e then

p—p(~\q and r are perspective in their union by Lemma 3. Since this

union is orthogonal to pC\q, Lemma 2 implies that p and pC\q+r

are perspective on e. Similarly on e' we have q subperspective to p.

The relation of perspectivity is, in general, not even finitely addi-

tive. However, the following improvement of Lemma 2 is valid in
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any orthomodular lattice. If a,- and bi are perspective in [0, e,] for

iQI and the e¿ are pairwise orthogonal, then ^a< and ^6< are

perspective.2 Again, it follows directly from Lemma 2 that if the

projections p= ^,p¡ and q= ^2» are orthogonal and pi and g¿ are

perspective for all i, then p and q are perspective.

With regard to possible generalizations, we note that, except for

Lemma 4, our arguments are nonspatial, and so apply to AW*-

algebras. More generally, very little seems to be known concerning

perspectivity in orthomodular lattices. M. F. Janowitz has called our

attention to an example [l, p. 21] of an orthomodular lattice in

which perspectivity fails to be transitive.
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