
A NOTE ON COUNTING ISOTROPY SUBGROUPS

L. N. MANN

1. Introduction. An elementary p-group of rank k is a group iso-

morphic to the direct sum of k copies of Zp, the additive group of

integers modulo a prime p. P. A. Smith has investigated the actions

of such a group G of homeomorphisms on the «-sphere Sn and has ob-

served certain similarities with the standard orthogonal actions. In

particular, he has shown [4], [5] that if G acts effectively on S", then

A = rank Gú [(«+l)/2] for p odd and k^n+l for p = 2. As usual,

[x] denotes the largest integer not exceeding x. The purpose of this

note is to show that if such a group G acts effectively on Sn, then the

number of distinct isotropy subgroups cannot exceed 2[(M+1)/21 for p

odd, and 2n+1 — 1 for p = 2. These are precisely the bounds which exist

for orthogonal actions.

The proof proceeds by first observing that every maximal isotropy

subgroup is of rank k — 1. A formula of Borel [l] is then utilized to

show that the number of maximal isotropy subgroups cannot exceed

[(w + l)/2] for p odd, « + 1 for p = 2, and that, moreover, each iso-

tropy subgroup of rank k — i, l^i^A — 1, is the intersection of i

maximal isotropy subgroups. Noting that A is [(« + l)/2] for p odd

and A^w-f-1 for p = 2, and allowing for the isotropy subgroups G

and {e}, the result follows.

2. Definitions and preliminaries. Given an action of a topological

transformation group G on a space X, the isotropy subgroup at a point

XoEX, denoted by GXa, is defined as the subgroup of all elements of G

which leave x0 fixed. The^action is said to be effective if fUex Gx = e,

the identity element of G; it is said to he free if {e} is the only iso-

tropy subgroup. The fixed-point^set ._of the'*.'action, denoted by

F(G, X), is the subset of X of all points with isotropy subgroup G.

All spaces considered will be compact Hausdorff spaces and the

usual Cech cohomology will be used. A cohomology n-sphere over Zp

is a space with the cohomology groups, coefficient group Zp, of S".

A generalized cohomology n-sphere over Zp is a cohomology «-sphere

over Zp which is also a cohomology «-manifold over Zp [l]. Results

of Smith [2], [3], [5] show that if an elementary £-group G acts on

a cohomology «-sphere (generalized cohomology «-sphere) X over

Zp, then F(G, X) is a cohomology r-sphere (generalized cohomology

Presented to the Society, January 23, 1964; received by the editors March 10,

1964.

476



A NOTE ON COUNTING ISOTROPY SUBGROUPS 477

r-sphere) over Zp, r¿n. Moreover, if X is a generalized cohomology

«-sphere and the action is effective, then r¿n — 2 and n — r is even

for p odd, and r¿n — 1 for p = 2. We shall use strongly the following

result of Borel [l]. (For F(K, X) empty, it is agreed that n(K, X)
= -L)

Theorem 1 (Borel). Suppose G is an elementary p-group acting

effectively on a cohomology n-sphere X over Zv. For each subgroup K of

G let n(K,X) be the integer such that F(K, X) is a cohomology n(K, X)-

sphere over Zp. Then

n - n(G, X) = £ (n(H, X) - n(G, X)),
H

where H runs through the subgroups of index p in G.

It will prove useful to have available the following group-theoretic

result which we present without proof.

Lemma 1. Let G be an elementary p-group oí rank k and K a subgroup

of G of rank k—i, l¿i¿k — l. Suppose K is the intersection of t distinct

subgroups of G, each of rank k — 1. Then t^i and K is the intersection

of some subcollection of i of the t subgroups.

3. Main results.

Theorem 2. Suppose G is an elementary p-group acting effectively

on a generalized cohomology n-sphere X over Zp. Let r = n(G, X) 2: — 1.

Then the number of distinct isotropy subgroups cannot exceed 2(n_r)/2

for p odd or 2n_r for p = 2.

Proof. Suppose rank G = Y(G) =k. We shall say that an isotropy

subgroup of rank less than k is maximal if it is not properly contained

in any isotropy subgroup with the possible exception of G. We first

show that each maximal isotropy subgroup is of rank k — 1. Suppose,

on the contrary, that S is a maximal isotropy subgroup with T(5)

¿k — 2. Now G/S leaves the generalized cohomology sphere F(S, X)

invariant. Moreover, since S is a maximal isotropy subgroup, it is

easy to see that G/S acts freely outside of the fixed-point set on

F(S, X). In fact, F(G/S, F(S, X)) = F(G, X). Now F(S, X)DF(G, X)
= F(G/S, F(S, X)) and the action of G/S on F(S, X) is effective. We

apply Theorem 1 to this action since T(G/S) ^2. We have

(1) n(S, X) - n(G, X) = £(«(27, F(S, X)) - n(G, X)),
H

where H runs through the subgroups of index p in G/S. Recalling that

G/S acts freely outside of F(G, X) on F(S, X), it follows that
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F(H, F(S, X)) = F(G, X) for ail H and, therefore, the right-hand side
of (1) is zero. However, since G/S acts effectively on F(S, X), it

follows that the left-hand side of (1) is strictly positive, giving us a

contradiction. Hence, each maximal isotropy subgroup is of rank

A —1. This conclusion could also have been obtained by using the

results of [4].

Next we observe that there are at most (« —r)/2 maximal isotropy

subgroups for p odd. But this follows immediately from Theorem 1

since each term (n(H, X) —n(G, X)) must be even for an odd prime.

For p = 2,we conclude that there are at most n — r maximal isotropy

subgroups.

Suppose that TCSCG, T(S) = k-l, and T(T) = k-2, with S an
isotropy subgroup of the action of G on X and T an isotropy sub-

group of the action of 5 on X. We wish to conclude that T is also

an isotropy subgroup of the action of G on X. We know that F(T, X)

DF(S, X). Suppose T is not an isotropy subgroup of G on X. Then

F(T, X)ÇU F(Si, X),
i

for some collection of isotropy subgroups 5¿ of G on X where SO) T

and T(Si) = A -1 for each i. Since SO T, we have F(T, X) 3 F(Si, X)

and

F(T, X) = U F(Si, X).
i

Due to dimensional restrictions (we are dealing with connected co-

homology manifolds), we must have F(T, X) = F(Si0, X) for some io.

Hence, F(Sio, X) = F(T, X)DF(S, X) which contradicts S being an

isotropy subgroup.

We now come to the crux of the argument : to show that if R is an

isotropy subgroup of G of rank k—i, l^iSk — 1, then R is the inter-

section of i distinct isotropy subgroups of rank A —1. By Lemma 1,

it is sufficient to show that R is the intersection of some collection of

isotropy subgroups of rank A — 1. We consider first the case that T(A)

= A —2. It is sufficient to exhibit two distinct maximal isotropy sub-

groups which contain R. Consider the action of G/R, T(G/R) = 2,

on the generalized cohomology sphere F(R, X). We have

F(G/R, F(R, X)) = F(G, X)CF(R, X). As R is an isotropy sub-
group, this action must be effective. Applying Theorem 1 to the

action, one sees that there must exist distinct cyclic subgroups K*

and K* of G/R with F(Ej, F(R, X))DF(G, X) for/ = l, 2. Since K*
and Kt  generate  G/R,   F(K*,  F(R, X))^F(K*,  F(R, X)); for,
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otherwise, F(G/R, F(R, X)) would be F(I£*, F(R, X)) instead of
F(G, X). Let x be the projection it: G-^G/R, and let Sj = iTl(K*),

j = l, 2. We claim F(SU X)^F(S2, X) and F(Sjt X)Z)F(G, X)
for j = l, 2. To see this observe that F(S}, X) = F(Sj/R, F(R, X))

= F(K*, F(R, X)). Now suppose that R = GX>. Then there exists

yjQF(Sp X) with y^xo and y¡QF(G, X), j = l, 2; and, moreover,

yi^yi. It follows that S^Gyj, j=l, 2, and we have two distinct

maximal isotropy subgroups, Si and S2, containing P.

We proceed by induction on k=r(G), starting with k = 3. But if

r(G)=3, we need consider isotropy subgroups R only of rank k — 2

(that is, of rank 1), and the argument above immediately applies.

Suppose then that R is an isotropy subgroup of G, r(G)=k. Then

there exists a maximal isotropy subgroup 5 of G with PC S and

r(S) =k — l. Consider the action of S on X. By our induction hypoth-

esis, R is the intersection of a collection T¡ of isotropy subgroups of

5 of rank k — 2. By an argument above, each T¡ is also an isotropy

subgroup of the action of G on X and, therefore, the intersection of

two maximal isotropy subgroups of rank k — 1. Finally, then, R is the

intersection of a collection of isotropy subgroups, each of rank k — 1.

We now know that there are at most binomial coefficient ((n~?/2)

distinct isotropy subgroups of rank k—i, l¿i¿k — 1, for p odd; at

most ("7r) distinct ones for p = 2. Noting that k¿(n—r)/2 for p odd

and k¿n—r for p = 2, an immediate generalization of Smith's result

in [4], [5], and allowing for the isotropy subgroups G and {e} of

rank k and 0, respectively, the theorem follows. Actually, if r= — 1,

that is, F(G, X) is empty, then we may omit G as a possible isotropy

subgroup and we observe that there exist at most 2(n+1>/2 — 1 distinct

isotropy subgroups for p odd, and at most 2n+1— 1 for p = 2.

Corollary. Let G be an elementary p-group acting effectively on En,

euclidean n-space. Then the number of distinct isotropy subgroups cannot

exceed 2[n/2) for p odd and 2" for p = 2.

Proof. Extend the action of G to Sn by leaving the point at in-

finity fixed. Of course, a stronger statement of the Corollary is pos-

sible in terms of the cohomology dimension, r, of F(G, En).
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DIFFERENTIABLE ACTIONS OF COMPACT
ABELIAN LIE GROUPS ON S»

L. N. MANN

1. Introduction. In [9] P. A. Smith raises the following question:

If a finite group G acts effectively on the «-sphere Sn, must there also

be some effective orthogonal action of G on 5"? Stated another way,

must all finite groups acting effectively on Sn he isomorphic to sub-

groups of the orthogonal group 0(w+l)? Smith has answered this

question in the affirmative for the case where G is an elementary

£-group [8], [9]. The Corollary to Theorem 2 of this paper settles the

case where G is a compact abelian Lie group (in particular, a finite

abelian group) and the action is assumed differentiable.

The proof of our main result is immediate if one assumes the exis-

tence of a fixed point, as evidenced by the following result which uti-

lizes Bochner's theorem on local linearity about a fixed point.

Theorem 1. Let G be a compact Lie group operating effectively and

differentiably on a differentiable n-manifold X. If there exits a point x0

left fixed by every element of G, then G is isomorphic to a subgroup of

0(n).

Proof. By Bochner's theorem [5, p. 206], we may assume G acts

orthogonally (but not necessarily effectively) on some small closed «-

cell D with center x0. G leaves bdy D = 5n_1 invariant. If G is not effec-

tive on 5n_1, then there must be a homeomorphism g0 of finite order

in G which leaves S"'1 pointwise fixed. Since g0 acts linearly on D and

leaves x0 fixed, it must also leave D pointwise fixed. By Newman's

theorem [5, p. 223], go must leave X pointwise fixed, violating the

effectiveness of G on X. Hence G acts orthogonally and effectively on

5n_1, and the theorem follows.
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