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A. H. CLIFFORD

The main purpose of the present note is to show (Theorem 2) that
any regular D-class of any semigroup is a partial homomorphic image
of a Brandt groupoid. It follows from this that a semigroup with zero
is a partial homomorphic image of a Brandt semigroup if and only
if it is regular and 0-bisimple.

In the first section, an alternative formulation is given of the de-
termination by H.-J. Hoehnke [1] of all partial homomorphisms of a
Brandt groupoid into an arbitrary semigroup. This is first done
(Theorem 1) for any completely 0-simple semigroup. The result is a
straightforward generalization of Theorem 3.14 of [2], in which all
partial homomorphisms of one completely 0-simple semigroup into
another are determined. The present terminology is that of [2];
Hoehnke omits the adjective “partial.” Basic definitions given in [2]
will not be repeated here; likewise, references to the fundamental
work of Brandt, Rees, Green, and Munn can be found in [2]

1. Partial homomorphisms of a completely 0-simple semigroup.
Let S and S* be semigroups with zero elements 0 and 0*, respec-
tively. A mapping 6 of S into S* is called a partial homomorphism if
(i) 00=0%*, and (ii) (ab)8=(a8)(b) for every pair of elements a, b of
S such that ab 0. The restriction of 8 to S\0 is then a partial homo-
morphism of the partial groupoid S\0 into S* as defined in [2, p. 93].
By agreeing to the trivial convention (i), there is no essential dis-
tinction between partial homomorphisms of S into S* and of S\0
into S*. Moreover, we need not require that S* have a zero element;
if it does not, we adjoin a zero element 0* to it for the application
of (i).

The author’s interest in partial homomorphisms originated in the
fact that they arise naturally in the theory of extensions of semi-
groups [2, §4.4].

A partial homomorphism 8: S—S* evidently preserves regularity
[2, p. 26] and Green’s relations ®, £, D, and ¢ [2, p. 47]. It follows
that if S is regular and 0-bisimple (i.e., S\0 is a D-class of S [2,
p. 76]), then (S\0)d is contained in a regular D-class D of S*. This
is the case, in particular, if .S is completely 0-simple [2, Theorem
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2.51, p. 79]. Since a Brandt semigroup B? is just a completely 0-sim-
ple inverse semigroup [2, Theorem 3.9, p. 102], we conclude, finally,
that if 6 is a partial homomorphism of a Brandt groupoid B=B%0
into a semigroup S*, then Bf is contained in a regular D-class D of S.
One might think that these successive particularizations would result
in some restriction on D, particularly if 8 is onto; the object of this
note is to show that this is not the case (Theorem 2 below).
Let D be a regular ®-class of S*. Let

{Ra:i* € I*} and {Lw:)\* € A%}

be the ®-classes and £-classes, respectively, of S* contained in D.
Then Hpox=Rx#MNLys are the JC-classes of S* contained in D. We
know that at least one of these must contain an idempotent, and so
be a maximal subgroup of S* [2, Theorem 2.16, p. 59]; choose one
such and call it H* = Hyx», 1* being an element of I* \A*. For each
1* in I'*, pick 7 in H s, and for each A* in A* pick ¢« in Hisme. Then
[2, Theorem 3.4, p. 92], every element of D is uniquely representable
in the form

1) 7 Xy (x € H*; i* € I*, \* € A*).

We regard the triple (x; 7%, A*) as coordinates of the element (1).

By the Rees Theorem [2, Theorem 3.5, p. 94], a completely 0-
simple semigroup can be represented as a regular Rees I XA matrix
semigroup M°(G; I, A; P) over a group with zero G° and with A XTI
sandwich matrix P = (p);). The elements of 9 can be represented as
triples (e¢; 7, \) multiplying according to

(2) (d, 'I:, )\)(b;]) :u) = (dp)\:ib; 7:, l") (d,b EGO, i3j€I7 )\,uE A)'

In fact, the proof of the Rees Theorem amounts to coordinatizing
the D-class MO\0. It should be remarked that, for an arbitrary regu-
lar D-class D, the elements (1) do not have a simple law of multiplica-
tion like (2).

THEOREM 1. Let S be a completely 0-simple semigroup represented as
a regular Rees I XA matrix semigroup MO(G; I, A; P). Let 0 be a partial
homomorphism of S into a semigroup S*. Then (S\0)8 is contained in a
regular D-class D of S. Let D be coordinatized as in (1). Then

3) (a;4, M0 = riui(a)ngy (@€ G;iELNE D),

where (i) ¢: I>I* and Y: A—A* are mappings such that if pr;#=0 then
Quris ©H*;
(ii) w: G—H* is a (group) homomorphism;



540 A. H. CLIFFORD [June

(iii) u: I—H* and v: A—>H?* are mappings such that if pr;#%0 then
4) riw = o(@utio) i
The mappings ¢, ¥, w, u, v are uniquely determined by 0. Conversely, if

mappings ¢, ¥, w, u, v are given satisfying (i), (ii), and (iii), then (3)
defines a partial homomorphism 0 of S\O into D.

Proor. The proof is so much like that of Theorem 3.14 of [2, p.
109], that we give only the outline. We can assume that the entry
pu of P is not zero. The mappings ¢ and ¢ are determined by

RO C Ry, L8 C Ly,

where {R;:i€I} are the ®-classes, and {L,:NEA} are the £-
classes, of S. This implies that

(@53, \)8 = rixgy

for some x in H*. If p);540, then (p5'; %, N\)8 is an idempotent in
Hisny, and it follows that gayris € H* [2, Theorem 2.17, p. 59]. De-
fining w: G—H* by

(B, a5 1, 1)0 = righit(aw)qy  (ho = qyris),

a brief calculation, using the uniqueness of the representation (1),
shows that w is a homomorphism. For each 1€ and A€EA we define
u; and v, in H* by

(€53, 1)0 = riguiquy,
(p11 1, N8 = r1ghi orgage
Applying 6 to
(834, N) = (54, Dpu o5 1, D(pn; 1, M),

we obtain (3). Applying 6 to (2) and using (3), again with the unique-
ness of (1), we obtain (4). This last step can be inverted to yield the
converse part of the theorem.

From a constructive point of view, Theorem 1 has the drawback
that, for given ¢, ¥, and o satisfying (i) and (ii), there is no assur-
ance that # and v can be found so as to satisfy (iii). This drawback
disappears, however, when S is a Brandt semigroup B° Here we can
assume B°=9(G; I, I; A), where A=(d,;) is the IXI identity
matrix over G° [2, Theorem 3.9, p. 102]. The condition (4) now re-
duces to

e* = Uyl ipWs (all el ),
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where e* is the identity element of H*; or, what is equivalent, to
©) v = U7 (qurie)

We note that gyri S H* by (i). Thus we can always satisfy (iii) by
choosing u: [—-H* arbitrarily, and then defining »: I-H* by (5).
Formula (3) becomes

© (a4, )0 = rigui(aw)u;(givris) " 'qiy-

This differs from Hoehnke's formula (16) of [1, Part III, p. 97],
chiefly because a definite coordinate system has been chosen for D,
independent of 6.

Now let D itself be a Brandt groupoid, say

D = B¥ = 9NO(H*; I*, I*; A¥\O.

Let us use square brackets to represent the elements [x*;i*,7*]
of B*. It is natural to choose 7= [e*; i*, 1*] and g.s = [e*; 1*, 1*].
We then have g7 = [e*; 1*, 1*], while gs7;»=0 in B*®, or is unde-
fined in B*, if 4*#;*. Hence condition (i) of Theorem 1 requires that
W =1¢ for every 1 in I; that is, ¢y =¢. (5) becomes simply v;=u;?,
and (6) becomes

(7 (a5 4, /)0 = [ui(aw)us?; ig, jo].

Thus every partial homomorphism 6 of one Brandt groupoid, B, into
another, B*, is given by (7) in terms of (i) an arbitrary mapping
¢: I—>I*, (ii) an arbitrary homomorphism w: G—H*, and (iii) an
arbitrary mapping u: I—H?*. (7) is equivalent to Hoehnke's formula
(22) in [1, Part I, p. 164]. It can also be obtained by specialization
from Theorem 3.14 of [2].

2. Partial homomorphic images of Brandt groupoids. We come now
to the main result of the present note.

THEOREM 2. Any regular D-class of any semigroup is a partial
homomorphic image of some Brandt groupoid.

Proor. Let D be a regular D-class of a semigroup S. Let
{R:i€ I} and {L:)€E A}

be the ®-classes and £-classes, respectively, of S contained in D. As
usual, we may assume that I and A havean element 1 in common such
that H,=R/NL, is a group. But now we shall also assume, as we
evidently may, that I and A are otherwise disjoint: INA = {1}

As usual, choose r; in H;; and ¢u in Hy in any way, for ¢ in I\1
and X in A\1, and choose r;=¢g;=¢y, the identity element of Hy. As
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in (1), without the stars, every element of D is uniquely representa-
ble in the form

(8) riagn (@€ Hu; i EI, N E A).

For ¢2in I\1 and X in A\1, let ¢; be any inverse of #; in Ry, and let n
be any inverse of ¢, in L;. Then

© goa=e€n (allain IU A).

Let B=9M(Hu; I\JA, I\UA; A)\0. Denote the elements of B by
triples (a; «, §). Multiplication in B is given by

(10) (d; «, ,3)([7, 8, 7) = (ab; Q, 7) (‘17 b€ Huy; «a, B, ryel V) A)'

Products (a; a, B)(b; 8, v) with 353" are not defined in B (and are
zero in BY). Define #: B—D as follows:

(a;,8)80 = raagsg (@ € Hu; 0, E IV A).
Then, because of (9),

(a; @, B)0(b; B, ¥)0 = raagsrsbgy = raabg,
= (ab; a, v)9.

From this and (10), it follows that 6 is a partial homomorphism of B
into D. Moreover, Bl =D, since Bf contains all the elements r;aq\
of (8).

As described in §3.3 of [2], if we adjoin a zero element 0 to a Brandt
groupoid B, defining ab=0 if ab is undefined in B, we obtain a
Brandt semigroup B°, that is, a completely 0-simple inverse semi-
group. The following is immediate from Theorem 2 and the first
assertion in Theorem 1.

COROLLARY 1. 4 semigroup with zero is a partial homomorphic image
of some Brandt semigroup if and only if it is regular and 0-bisimple.

As defined in [2, p. 93], a partial isomorphism is a partial homo-
morphism which is one-to-one and onto. Not every regular D-class
is a partial isomorphic image of some Brandt groupoid, and the
question of telling which ones are remains unsettled. The next theorem
gives a sufficient condition.

THEOREM 3. Let D be a regular D-class of a semigroup S with the
property that it is possible to set up a one-to-one correspondence between
the ®-classes R of D and the £-classes £ of D such that if R and L cor-
respond, then RML contains an idempotent. Then D is a partial iso-
morphic image of the Brandt groupoid having the same structure group
as D and the same number of ®-classes (and £-classes) as D.
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ProoF. By hypothesis, we can index the ®-classes and the £-classes
of D by the same index set I, such that for each ¢ in I, Ry \L; con-
tains an idempotent e;. The 3¢-class H;;= R, L, is then the maximal
subgroup H,; of S containing e;. Let 1&€1, and pick ¢; in Hy; in any
way for ¢ in I\1, and let ¢1=e;. Let ¢/ be the inverse of g; in Hy;
such exists since both Hy; and Hy; contain idempotents [2, Theorem
2.18, p. 60]. Take B=9(Hy; I, I; A)\O and define §: B—D by

(11) (a;4,7)0 = giag; (e € Hu;i,j € I).

Since every element of D is uniquely expressible in the form on the
right-hand side of (11), and ¢;q/ =e1, we see at once that 6 is a partial
isomorphism of B onto D.

B is unique, to within isomorphism, since any Brandt groupoid is
completely determined by its structure group and the cardinal num-
ber of its ®R-classes (or £-classes).

COROLLARY 2. Every 0-bisimple inverse semigroup S is a partial iso-
morphic image of the Brandt semigroup having the same structure group
as S and the same number of idempotents as S.

Proor. The hypothesis of Theorem 3 is satisfied by any inverse
semigroup [2, Corollary 2.19, p. 60]. For 0-bisimple inverse semi-
groups, in particular, for Brandt semigroups, the sets of ®-classes,
£-classes, and nonzero idempotents all have the same cardinal.

We conclude with an example to show that a regular 0-bisimple
semigroup may be a partial isomorphic image of a Brandt semigroup,
but not of one having the same structure group.

Let B=9%E; I, I; A)\0, where E= {e} is a one-element group,
and I={1, 2}. Let S\0=HXE, where H is a cyclic group {e, a}
of order 2, and E is a right zero semigroup of order 2. We may repre-
sent the elements of S as pairs (x; ) with x&€H, 1&€I, multiplying
as follows:

(% )(¥59) = (xy;7) (% y € Hyi,j € ).
Define 6: B°—S by
(e;1, 10 =(e; 1), (e51,2)0 = (a;2)
(6;2,1)0 = (a;1),  (e;2,2)0 = (¢52)
and 00=0. Clearly 6 is one-to-one and onto, and it is easy to verify
that it is a partial homomorphism.
On the other hand, S cannot be a partial isomorphic irnage of any

Brandt semigroup B° having structure group of order 2. For B must
then have order twice a square, whereas S\0 has order 4.
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EVERY STANDARD CONSTRUCTION IS INDUCED
BY A PAIR OF ADJOINT FUNCTORS

H. KLEISLI

In this note, we prove the converse of the following result of
P. Huber [2]. Let F: X—& and G: £—X be covariant adjoint func-
tors, that is, functors such that there exist two (functor) morphisms
¢: I-GF and : FG—I satisfying the relations
(1) (n*xF)o(F*¢§) = 1xF,

2 G*n)o(E*G) = *G.
Then, the triple (C, &, p) given by
C = FG, k=7 and p=F*{*xG

is a standard comstruction in £, that is, C is a covariant functor,
k: C—Iand p: C—C?are (functor) morphisms, and the following rela-
tions hold:

3) (kxC)op = (Cxk)op=xC,
4) (p*Cop=(Cxp)op.

This standard construction is said to be induced by the pair of adjoint
functors F and G. For further explanation of the notation and
terminology, see [2], or the appendix of [1].

TueoreM. Let (C, k, p) be a standard construction in a category £.
Then there exists a category X and two covariant functors F: X—L
and G: £—X such that

(i) F is (left) adjoint to G,

(ii) (C, &, p) is induced by F and G.
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