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The main purpose of the present note is to show (Theorem 2) that

any regular ©-class of any semigroup is a partial homomorphic image

of a Brandt groupoid. It follows from this that a semigroup with zero

is a partial homomorphic image of a Brandt semigroup if and only

if it is regular and O-bisimple.

In the first section, an alternative formulation is given of the de-

termination by H.-J. Hoehnke [l] of all partial homomorphisms of a

Brandt groupoid into an arbitrary semigroup. This is first done

(Theorem 1) for any completely 0-simple semigroup. The result is a

straightforward generalization of Theorem 3.14 of [2], in which all

partial homomorphisms of one completely 0-simple semigroup into

another are determined. The present terminology is that of [2];

Hoehnke omits the adjective "partial." Basic definitions given in [2]

will not be repeated here; likewise, references to the fundamental

work of Brandt, Rees, Green, and Munn can be found in [2].

1. Partial homomorphisms of a completely 0-simple semigroup.

Let 5 and S* he semigroups with zero elements 0 and 0*, respec-

tively. A mapping 6 oî S into S* is called a partial homomorphism if

(i) 00 = 0*, and (ii) (ab)d = (a9)(bd) for every pair of elements a, b of

5 such that ab^O. The restriction of 8 to S\0 is then a partial homo-

morphism of the partial groupoid S\0 into S* as defined in [2, p. 93].

By agreeing to the trivial convention (i), there is no essential dis-

tinction between partial homomorphisms of 5 into S* and of 5\0

into S*. Moreover, we need not require that S* have a zero element;

if it does not, we adjoin a zero element 0* to it for the application

of (i).

The author's interest in partial homomorphisms originated in the

fact that they arise naturally in the theory of extensions of semi-

groups [2, §4.4].

A partial homomorphism 6: S—>S* evidently preserves regularity

[2, p. 26] and Green's relations <R, £, 3D, and 3C [2, p. 47]. It follows

that if S is regular and O-bisimple (i.e., S\0 is a 3D-class of 5 [2,

p. 76]), then (S\0)6 is contained in a regular SD-class D of S*. This

is the case, in particular, if S is completely 0-simple  [2, Theorem

Received by the editors December 30, 1963.

1 This work was supported by the National Science Foundation grant GP 1791.

538



PARTIAL HOMOMORPHIC IMAGES OF BRANDT GROUPOIDS 539

2.51, p. 79]. Since a Brandt semigroup B° is just a completely 0-sim-

ple inverse semigroup [2, Theorem 3.9, p. 102], we conclude, finally,

that if 6 is a partial homomorphism of a Brandt groupoid S=P°\0

into a semigroup S*, then B9 is contained in a regular 3D-class D of S.

One might think that these successive particularizations would result

in some restriction on D, particularly if 0 is onto; the object of this

note is to show that this is not the case (Theorem 2 below).

Let D be a regular SD-class of S*. Let

{Ri*:i*QI*\    and    {ZX.:A*£A*}

be the (R-classes and ¿-classes, respectively, of 5* contained in D.

Then Hi*\*=Ri*r\L\* are the 3C-classes of S* contained in D. We

know that at least one of these must contain an idempotent, and so

be a maximal subgroup of S* [2, Theorem 2.16, p. 59]; choose one

such and call it H* = Hm*, 1* being an element of 7*r\A*. For each

i* in 7*, pick r,-» in 77¿*i*, and for each X* in A* pick q\* in Hi*\*. Then

[2, Theorem 3.4, p. 92], every element of D is uniquely representable

in the form

(1) »x?x*        (x Q H*; i* £ 7*, X* £ A*).

We regard the triple (x; i*, X*) as coordinates of the element (1).

By the Rees Theorem [2, Theorem 3.5, p. 94], a completely 0-

simple semigroup can be represented as a regular Rees 7 XA matrix

semigroup "3K°(G; 7, A; P) over a group with zero G°, and with AX7

sandwich matrix P = (pu). The elements of £01° can be represented as

triples (a; i, X) multiplying according to

(2) (a; i, \)(b;j, p) = (ap^b; i, p)        (a, b £ G°; i,j £ 7; X, ai £ A).

In fact, the proof of the Rees Theorem amounts to coordinatizing

the SD-class 3TC°\0. It should be remarked that, for an arbitrary regu-

lar SD-class D, the elements (1) do not have a simple law of multiplica-

tion like (2).

Theorem 1. Let S be a completely 0-simple semigroup represented as

a regular Rees 7XA matrix semigroup yil°(G; 7, A; P). Let 6 be a partial

homomorphism of S into a semigroup S*. Then (S\0)9 is contained in a

regular T)-class D of S. Let D be coordinatized as in (1). PAe«

(3) (a; i, X)0 = r^Ui(ao})v\q\i,        (a Q G; i Q 7, X £ A),

where (i) <p: 7—>I* and \{/: A—»A* are mappings such that if pu^O then

qu^i^QH*;

(ii) w: G—»77* is a (group) homomorphism;
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(iii) u: I—>H* and v:A—>H* are mappings such that if pu^O then

(4) puco = »x(gx*r.-eO«i.

The mappings <¡>,\p,o), u,v are uniquely determined by 6. Conversely, if

mappings <b, \p, co, u, v are given satisfying (i), (ii), and (iii), then (3)

defines a partial homomorphism 0 of S\0 into D.

Proof. The proof is so much like that of Theorem 3.14 of [2, p.

109], that we give only the outline. We can assume that the entry

pix of P is not zero. The mappings </> and \p are determined by

Riß Ç 2?,>,        L\B Ç L\f,

where {Ri'.iEl} are the (R-classes, and {Lx:XGA} are the £•

classes, of 5. This implies that

(a; i, X)0 = ri4,xq\t

for some x in H*. If pxi^O, then (pu1; i, X)0 is an idempotent in

Hi4,M, and it follows that q^r^EH* [2, Theorem 2.17, p. 59]. De-

fining w: G—>2ï* by

(pxx1, a; 1, 1)0 = rHhb~1(aw)qhi,        (h0 = çi^fi*),

a brief calculation, using the uniqueness of the representation (1),

shows that w is a homomorphism. For each iEI and X£A we define

Ui and v\ in H* by

(e; i, 1)0 = ritUiqit,

(pu 1, X)0 = rHhb~1v\qxf.

Applying 0 to

(a; i, X) = (e; i, l)(pn a; 1, l)(pu ; 1, X),

we obtain (3). Applying 0 to (2) and using (3), again with the unique-

ness of (1), we obtain (4). This last step can be inverted to yield the

converse part of the theorem.

From a constructive point of view, Theorem 1 has the drawback

that, for given <¡>, \p, and « satisfying (i) and (ii), there is no assur-

ance that u and v can be found so as to satisfy (iii). This drawback

disappears, however, when 5 is a Brandt semigroup B°. Here we can

assume 23° = 9Tl0(G; 2", 2"; A), where A = (5,7) is the IXI identity

matrix over G° [2, Theorem 3.9, p. 102]. The condition (4) now re-

duces to

e* = Viq^r^Ui        (all iEI),
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where e* is the identity element of H*; or, what is equivalent, to

(5) Vi = uT1(qn,ri^)-1.

We note that q^r^QH* by (i). Thus we can always satisfy (iii) by

choosing u: I—>H* arbitrarily, and then defining v: I—>H* by (5).

Formula (3) becomes

(6) (a; i,j)0 = r^u^ac^uj^q^r^)-^.

This differs from Hoehnke's formula (16) of [l, Part III, p. 97],

chiefly because a definite coordinate system has been chosen for D,

independent of 9.

Now let D itself be a Brandt groupoid, say

D = B* = *M0(H*; 7*, I*; A*)\0.

Let us use square brackets to represent the elements [x*;i*,j*]

of B*. It is natural to choose r¿*= [e*; i*, 1*] and q,*= [e*; 1*, i*].

We then have g¿*r> = [e*; 1*, 1*], while g>ry» = 0 in B*°, or is unde-

fined in B*, if i*7¿j*. Hence condition (i) of Theorem 1 requires that

v¡/ = up for every i in 7; that is, ty=<p. (5) becomes simply vi = u~1,

and (6) becomes

(7) (a; i, j)d = [ui(ao})ujl; i<p, j4>].

Thus every partial homomorphism 9 of one Brandt groupoid, B, into

another, B*, is given by (7) in terms of (i) an arbitrary mapping

d>: I—*I*, (ii) an arbitrary homomorphism co: G—»77*, and (iii) an

arbitrary mapping u: I-+H*. (7) is equivalent to Hoehnke's formula

(22) in [l, Part I, p. 164]. It can also be obtained by specialization

from Theorem 3.14 of [2].

2. Partial homomorphic images of Brandt groupoids. We come now

to the main result of the present note.

Theorem 2. Any regular Si-class of any semigroup is a partial

homomorphic image of some Brandt groupoid.

Proof. Let D he a regular SD-class of a semigroup S. Let

{Ri-.iQl}    and    {Ly. X £ A}

be the (R-classes and ¿G-classes, respectively, of 5 contained in D. As

usual, we may assume that 7 and A have an element 1 in common such

that Hu = Ri!~\Li is a group. But now we shall also assume, as we

evidently may, that 7 and A are otherwise disjoint: 7f\A= {1}.

As usual, choose r, in Ha. and <ft in HX\ in any way, for i in 7\1

and X in A\l, and choose fi = gi = en, the identity element of 77n. As
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in (1), without the stars, every element of D is uniquely representa-

ble in the form

(8) uaqx       (a £ Hn; i E I, X E A).

For i in I\i and X in A\l, let g*, be any inverse of r,- in Ru and let fx

be any inverse of q\ in h\. Then

(9) qara = en       (all a in I U A).

Let B = "3R°(Hii; IVJA, 2\JA; A)\0. Denote the elements of B by
triples (a; a, ß). Multiplication in B is given by

(10) (a;a,ß)(b;ß,y) = (ab; a, y)        (a, b E Hu; a, ß, y E I U A).

Products (a; a, ß)(b; ß', y) with ß^ß' are not defined in B (and are

zero in B°). Define 0: B—>D as follows:

(a; a, ß)6 = raaqß       (s G ffn; a, (3 £ / U A).

Then, because of (9),

(a; a, ß)8(b; ß, y)d = raaqßrßbqy = raabqy

- (ab; a, y)B.

From this and (10), it follows that 0 is a partial homomorphism of B

into D. Moreover, B6 = D, since 230 contains all the elements rtaqx

of (8).
As described in §3.3 of [2], if we adjoin a zero element 0 to a Brandt

groupoid B, defining ab = Q if ab is undefined in B, we obtain a

Brandt semigroup B°, that is, a completely 0-simple inverse semi-

group. The following is immediate from Theorem 2 and the first

assertion in Theorem 1.

Corollary 1. A semigroup with zero is a partial homomorphic image

of some Brandt semigroup if and only if it is regular and O-bisimple.

As defined in [2, p. 93], a partial isomorphism is a partial homo-

morphism which is one-to-one and onto. Not every regular 2D-ciass

is a partial isomorphic image of some Brandt groupoid, and the

question of telling which ones are remains unsettled. The next theorem

gives a sufficient condition.

Theorem 3. Let D be a regular Si-class of a semigroup S with the

property that it is possible to set up a one-to-one correspondence between

the (R-classes R of D and the £-classes £ of D such that if R and L cor-

respond, then RC\L contains an idempotent. Then D is a partial iso-

morphic image of the Brandt groupoid having the same structure group

as D and the same number of (R-classes (and £-classes) as D.
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Proof. By hypothesis, we can index the (R-classes and the ¿-classes

of D by the same index set 7, such that for each i in 7, RíC\Lí con-

tains an idempotent e¿. The 3C-class 7p, = P¿f^P¿ is then the maximal

subgroup HH of S containing e,-. Let 1£7, and pick q{ in 77ij in any

way for i in 7\1, and let qi = ei. Let qi be the inverse of q¡ in Ha',

such exists since both Hn and 77¿¡ contain idempotents [2, Theorem

2.18, p. 60]. Take P = 3E°(77„; 7, 7; A)\0 and define 9: B->D by

(11) (a; i, j)6 = qlaq¡        (a £ Hn; i, j £ 7).

Since every element of D is uniquely expressible in the form on the

right-hand side of (11), and q,qj =eu we see at once that 9 is a partial

isomorphism of B onto D.

B is unique, to within isomorphism, since any Brandt groupoid is

completely determined by its structure group and the cardinal num-

ber of its (R-classes (or ¿-classes).

Corollary 2. Every 0-bisimple inverse semigroup S is a partial iso-

morphic image of the Brandt semigroup having the same structure group

as S and the same number of idempotents as S.

Proof. The hypothesis of Theorem 3 is satisfied by any inverse

semigroup [2, Corollary 2.19, p. 60]. For 0-bisimple inverse semi-

groups, in particular, for Brandt semigroups, the sets of (R-classes,

¿-classes, and nonzero idempotents all have the same cardinal.

We conclude with an example to show that a regular 0-bisimple

semigroup may be a partial isomorph ic image of a Brandt semigroup,

but not of one having the same structure group.

Let P = 3TC°(P; 7, 7; A)\0, where E= {e\ is a one-element group,

and I— {l, 2}. Let S\0 = HXE, where 77" is a cyclic group {e, a}

of order 2, and £ is a right zero semigroup of order 2. We may repre-

sent the elements of 5 as pairs (x; i) with xQH, iQI, multiplying

as follows:

(x; i)(y,j) = (xy;j) (x, yQH;i,jQ I).

Define 0:P°->,S by

(e; 1, 1)6 = (e; 1), (e; 1, 2)0 = (a; 2)

(e; 2, 1)8 = (a; 1), (e; 2, 2)8 = (e; 2)

and 09 — 0. Clearly 9 is one-to-one and onto, and it is easy to verify

that it is a partial homomorphism.

On the other hand, S cannot be a partial isomorphic image of any

Brandt semigroup B" having structure group of order 2. For B must

then have order twice a square, whereas 5\0 has order 4.
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EVERY STANDARD CONSTRUCTION IS INDUCED
BY A PAIR OF ADJOINT FUNCTORS

H. KLEISLI

In this note, we prove the converse of the following result of

P. Huber [2]. Let F: 3C—>£ and G: £—»X be covariant adjoint func-

tors, that is, functors such that there exist two (functor) morphisms

f : I-^GF and w: FG—+I satisfying the relations

(1) (n*F)o(F*t) = i*F,

(2) (G * v) o (f * G) = t * G.

Then, the triple (C, k, p) given by

C = FG,       k = v   and   p = F * f * G

is a standard construction in £, that is, C is a covariant functor,

A: C—rlandp: C-^C2are (functor) morphisms, and the following rela-

tions hold:

(3) (k * C) o p = (C * k) o p = i * C,

(4) (p * C) o p = (C * p) o p.

This standard construction is said to be induced by the pair of adjoint

functors F and G. For further explanation of the notation and

terminology, see [2], or the appendix of [l].

Theorem. Let (C, A, p) be a standard construction in a category £.

Then there exists a category X and two covariant functors F: 3C—>£

and G: £—>3Z such that

(i)   F is (left) adjoint to G,
(ii) (C, A, p) is induced by F and G.
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