PARTIAL HOMOMORPHIC IMAGES OF BRANDT GROUPOIDS ${ }^{1}$

A. H. CLIFFORD

The main purpose of the present note is to show (Theorem 2) that any regular \mathfrak{D}-class of any semigroup is a partial homomorphic image of a Brandt groupoid. It follows from this that a semigroup with zero is a partial homomorphic image of a Brandt semigroup if and only if it is regular and 0 -bisimple.

In the first section, an alternative formulation is given of the determination by H.-J. Hoehnke [1] of all partial homomorphisms of a Brandt groupoid into an arbitrary semigroup. This is first done (Theorem 1) for any completely 0 -simple semigroup. The result is a straightforward generalization of Theorem 3.14 of [2], in which all partial homomorphisms of one completely 0 -simple semigroup into another are determined. The present terminology is that of [2]; Hoehnke omits the adjective "partial." Basic definitions given in [2] will not be repeated here; likewise, references to the fundamental work of Brandt, Rees, Green, and Munn can be found in [2].

1. Partial homomorphisms of a completely 0 -simple semigroup.

 Let S and S^{*} be semigroups with zero elements 0 and 0^{*}, respectively. A mapping θ of S into S^{*} is called a partial homomorphism if (i) $0 \theta=0^{*}$, and (ii) $(a b) \theta=(a \theta)(b \theta)$ for every pair of elements a, b of S such that $a b \neq 0$. The restriction of θ to $S \backslash 0$ is then a partial homomorphism of the partial groupoid $S \backslash 0$ into S^{*} as defined in [2, p. 93]. By agreeing to the trivial convention (i), there is no essential distinction between partial homomorphisms of S into S^{*} and of $S \backslash 0$ into S^{*}. Moreover, we need not require that S^{*} have a zero element; if it does not, we adjoin a zero element 0^{*} to it for the application of (i).The author's interest in partial homomorphisms originated in the fact that they arise naturally in the theory of extensions of semigroups [2, §4.4].
A partial homomorphism $\theta: S \rightarrow S^{*}$ evidently preserves regularity [2, p. 26] and Green's relations $\mathscr{R}, \mathscr{L}, \mathfrak{D}$, and $\mathfrak{H}[2$, p.47]. It follows that if S is regular and 0 -bisimple (i.e., $S \backslash 0$ is a \mathscr{D}-class of S [2, p. 76]), then $(S \backslash 0) \theta$ is contained in a regular \mathfrak{D}-class D of S^{*}. This is the case, in particular, if S is completely 0 -simple [2 , Theorem

[^0]2.51, p. 79]. Since a Brandt semigroup B^{0} is just a completely 0 -simple inverse semigroup [2, Theorem 3.9, p. 102], we conclude, finally, that if θ is a partial homomorphism of a Brandt groupoid $B=B^{0} \backslash 0$ into a semigroup S^{*}, then $B \theta$ is contained in a regular D-class D of S. One might think that these successive particularizations would result in some restriction on D, particularly if θ is onto; the object of this note is to show that this is not the case (Theorem 2 below).

Let D be a regular D-class of S^{*}. Let

$$
\left\{R_{i^{*}}: i^{*} \in I^{*}\right\} \quad \text { and } \quad\left\{L_{\lambda^{*}}: \lambda^{*} \in \Lambda^{*}\right\}
$$

be the \mathbb{R}-classes and $\&$-classes, respectively, of S^{*} contained in D. Then $H_{i^{*} \lambda^{*}}=R_{i^{*}} \cap L_{\lambda^{*}}$ are the \mathscr{H}-classes of S^{*} contained in D. We know that at least one of these must contain an idempotent, and so be a maximal subgroup of S^{*} [2, Theorem 2.16, p. 59]; choose one such and call it $H^{*}=H_{1^{*} 1^{*}}, 1^{*}$ being an element of $I^{*} \cap \Lambda^{*}$. For each i^{*} in I^{*}, pick $r_{i^{*}}$ in $H_{i^{*} 1^{*}}$, and for each λ^{*} in Λ^{*} pick $q_{\lambda^{*}}$ in $H_{1^{*} \lambda^{*}}$. Then [2, Theorem 3.4, p. 92], every element of D is uniquely representable in the form

$$
\begin{equation*}
r_{i *} x q_{\lambda^{*}} \quad\left(x \in H^{*} ; i^{*} \in I^{*}, \lambda^{*} \in \Lambda^{*}\right) \tag{1}
\end{equation*}
$$

We regard the triple ($x ; i^{*}, \lambda^{*}$) as coordinates of the element (1).
By the Rees Theorem [2, Theorem 3.5, p. 94], a completely 0simple semigroup can be represented as a regular Rees $I \times \Lambda$ matrix semigroup $\mathscr{T}^{0}(G ; I, \Lambda ; P)$ over a group with zero G^{0}, and with $\Lambda \times I$ sandwich matrix $P=\left(p_{\lambda_{i}}\right)$. The elements of \mathscr{T}^{0} can be represented as triples ($a ; i, \lambda$) multiplying according to
(2) $(a ; i, \lambda)(b ; j, \mu)=\left(a p_{\lambda_{j}} b ; i, \mu\right) \quad\left(a, b \in G^{0} ; i, j \in I ; \lambda, \mu \in \Lambda\right)$.

In fact, the proof of the Rees Theorem amounts to coordinatizing the \mathscr{D}-class $\mathscr{T}^{\circ} \backslash 0$. It should be remarked that, for an arbitrary regular D-class D, the elements (1) do not have a simple law of multiplication like (2).

Theorem 1. Let S be a completely 0 -simple semigroup represented as a regular Rees $I \times \Lambda$ matrix semigroup $\mathfrak{T i}^{0}(G ; I, \Lambda ; P)$. Let θ be a partial homomorphism of S into a semigroup S^{*}. Then $(S \backslash 0) \theta$ is contained in a regular D-class D of S. Let D be coordinatized as in (1). Then

$$
\begin{equation*}
(a ; i, \lambda) \theta=r_{i \phi} u_{i}(a \omega) v_{\lambda} q_{\lambda \psi} \quad(a \in G ; i \in I, \lambda \in \Lambda), \tag{3}
\end{equation*}
$$

where (i) $\phi: I \rightarrow I^{*}$ and $\psi: \Lambda \rightarrow \Lambda^{*}$ are mappings such that if $p_{\lambda i} \neq 0$ then $q_{\lambda \psi} r_{i \phi} \in H^{*}$;
(ii) $\omega: G \rightarrow H^{*}$ is a (group) homomorphism;
(iii) $u: I \rightarrow H^{*}$ and $v: \Lambda \rightarrow H^{*}$ are mappings such that if $p_{\lambda_{i}} \neq 0$ then

$$
\begin{equation*}
p_{\lambda i} \omega=v_{\lambda}\left(q_{\lambda \psi} r_{i \phi}\right) u_{i} . \tag{4}
\end{equation*}
$$

The mappings ϕ, ψ, ω, u, v are uniquely determined by θ. Conversely, if mappings ϕ, ψ, ω, u, v are given satisfying (i), (ii), and (iii), then (3) defines a partial homomorphism θ of $S \backslash 0$ into D.

Proof. The proof is so much like that of Theorem 3.14 of [2, p. 109], that we give only the outline. We can assume that the entry p_{11} of P is not zero. The mappings ϕ and ψ are determined by

$$
R_{i} \theta \subseteq R_{i \phi}, \quad L_{\lambda} \theta \subseteq L_{\lambda \psi}
$$

where $\left\{R_{i}: i \in I\right\}$ are the \mathcal{Q}-classes, and $\left\{L_{\lambda}: \lambda \in \Lambda\right\}$ are the $\mathcal{\&}$ classes, of S. This implies that

$$
(a ; i, \lambda) \theta=r_{i \phi} x q_{\lambda \psi}
$$

for some x in H^{*}. If $p_{\lambda i} \neq 0$, then $\left(p_{\lambda i}^{-1} ; i, \lambda\right) \theta$ is an idempotent in $H_{i \phi, \lambda \psi}$, and it follows that $q_{\lambda \psi} r_{i \phi} \in H^{*}[2$, Theorem 2.17, p. 59]. Defining $\omega: G \rightarrow H^{*}$ by

$$
\left(p_{11}^{-1}, a ; 1,1\right) \theta=r_{1 \phi} h_{0}^{-1}(a \omega) q_{1 \psi} \quad\left(h_{0}=q_{1 \psi} r_{1 \phi}\right)
$$

a brief calculation, using the uniqueness of the representation (1), shows that ω is a homomorphism. For each $i \in I$ and $\lambda \in \Lambda$ we define u_{i} and v_{λ} in H^{*} by

$$
\begin{gathered}
(e ; i, 1) \theta=r_{i \phi} u_{i} q_{1 \psi}, \\
\left(p_{11}^{-1} 1, \lambda\right) \theta=r_{1 \phi} h_{0}^{-1} v_{\lambda} q_{\lambda \psi} .
\end{gathered}
$$

Applying θ to

$$
(a ; i, \lambda)=(e ; i, 1)\left(p_{11}^{-1} a ; 1,1\right)\left(p_{11}^{-1} ; 1, \lambda\right)
$$

we obtain (3). Applying θ to (2) and using (3), again with the uniqueness of (1), we obtain (4). This last step can be inverted to yield the converse part of the theorem.

From a constructive point of view, Theorem 1 has the drawback that, for given ϕ, ψ, and ω satisfying (i) and (ii), there is no assurance that u and v can be found so as to satisfy (iii). This drawback disappears, however, when S is a Brandt semigroup B^{0}. Here we can assume $B^{0}=\mathscr{N}^{0}(G ; I, I ; \Delta)$, where $\Delta=\left(\delta_{i j}\right)$ is the $I \times I$ identity matrix over G^{0} [2, Theorem 3.9, p. 102]. The condition (4) now reduces to

$$
e^{*}=v_{i} q_{i \psi} r_{i \phi} u_{i} \quad(\text { all } i \in I),
$$

where e^{*} is the identity element of H^{*}; or, what is equivalent, to

$$
\begin{equation*}
v_{i}=u_{i}^{-1}\left(q_{i \psi} r_{i \phi}\right)^{-1} \tag{5}
\end{equation*}
$$

We note that $q_{i \psi} r_{i \phi} \in H^{*}$ by (i). Thus we can always satisfy (iii) by choosing $u: I \rightarrow H^{*}$ arbitrarily, and then defining $v: I \rightarrow H^{*}$ by (5). Formula (3) becomes

$$
\begin{equation*}
(a ; i, j) \theta=r_{i \phi} u_{i}(a \omega) u_{j}^{-1}\left(q_{j \psi} r_{j \phi}\right)^{-1} q_{j \psi} . \tag{6}
\end{equation*}
$$

This differs from Hoehnke's formula (16) of [1, Part III, p. 97], chiefly because a definite coordinate system has been chosen for D, independent of θ.

Now let D itself be a Brandt groupoid, say

$$
D=B^{*}=\mathscr{N}^{0}\left(H^{*} ; I^{*}, I^{*} ; \Delta^{*}\right) \backslash 0 .
$$

Let us use square brackets to represent the elements $\left[x^{*} ; i^{*}, j^{*}\right]$ of B^{*}. It is natural to choose $r_{i^{*}}=\left[e^{*} ; i^{*}, 1^{*}\right]$ and $q_{i^{*}}=\left[e^{*} ; 1^{*}, i^{*}\right]$. We then have $q_{i^{*} r_{i^{*}}}=\left[e^{*} ; 1^{*}, 1^{*}\right]$, while $q_{i^{*} r_{j^{*}}}=0$ in $B^{* 0}$, or is undefined in B^{*}, if $i^{*} \neq j^{*}$. Hence condition (i) of Theorem 1 requires that $i \psi=i \phi$ for every i in I; that is, $\psi=\phi$. (5) becomes simply $v_{i}=u_{i}^{-1}$, and (6) becomes

$$
\begin{equation*}
(a ; i, j) \theta=\left[u_{i}(a \omega) u_{j}^{-1} ; i \phi, j \phi\right] . \tag{7}
\end{equation*}
$$

Thus every partial homomorphism θ of one Brandt groupoid, B, into another, B^{*}, is given by (7) in terms of (i) an arbitrary mapping $\phi: I \rightarrow I^{*}$, (ii) an arbitrary homomorphism $\omega: G \rightarrow H^{*}$, and (iii) an arbitrary mapping $u: I \rightarrow H^{*}$. (7) is equivalent to Hoehnke's formula (22) in [1, Part I, p. 164]. It can also be obtained by specialization from Theorem 3.14 of [2].
2. Partial homomorphic images of Brandt groupoids. We come now to the main result of the present note.

Theorem 2. Any regular D-class of any semigroup is a partial homomorphic image of some Brandt groupoid.

Proof. Let D be a regular D-class of a semigroup S. Let

$$
\left\{R_{i}: i \in I\right\} \quad \text { and } \quad\left\{L_{\lambda}: \lambda \in \Lambda\right\}
$$

be the \mathcal{R}-classes and $\mathscr{\&}$-classes, respectively, of S contained in D. As usual, we may assume that I and Λ have an element 1 in common such that $H_{11}=R_{1} \cap L_{1}$ is a group. But now we shall also assume, as we evidently may, that I and Λ are otherwise disjoint: $I \cap \Lambda=\{1\}$.

As usual, choose r_{i} in $H_{i 1}$ and q_{λ} in $H_{1 \lambda}$ in any way, for i in $I \backslash 1$ and λ in $\Lambda \backslash 1$, and choose $r_{1}=q_{1}=e_{11}$, the identity element of H_{11}. As
in (1), without the stars, every element of D is uniquely representable in the form

$$
\begin{equation*}
r_{i} a q_{\lambda} \quad\left(a \in H_{11} ; i \in I, \lambda \in \Lambda\right) \tag{8}
\end{equation*}
$$

For i in $I \backslash 1$ and λ in $\Lambda \backslash 1$, let q_{i} be any inverse of r_{i} in R_{1}, and let r_{λ} be any inverse of q_{λ} in L_{1}. Then

$$
\begin{equation*}
q_{\alpha} r_{\alpha}=e_{11} \quad(\text { all } \alpha \text { in } I \cup \Lambda) \tag{9}
\end{equation*}
$$

Let $B=\mathscr{T r}^{0}\left(H_{11} ; I \cup \Lambda, I \cup \Lambda ; \Delta\right) \backslash 0$. Denote the elements of B by triples ($a ; \alpha, \beta$). Multiplication in B is given by

$$
\begin{equation*}
(a ; \alpha, \beta)(b ; \beta, \gamma)=(a b ; \alpha, \gamma) \quad\left(a, b \in H_{11} ; \alpha, \beta, \gamma \in I \cup \Lambda\right) \tag{10}
\end{equation*}
$$

Products $(a ; \alpha, \beta)\left(b ; \beta^{\prime}, \gamma\right)$ with $\beta \neq \beta^{\prime}$ are not defined in B (and are zero in B^{0}. Define $\theta: B \rightarrow D$ as follows:

$$
(a ; \alpha, \beta) \theta=r_{\alpha} a q_{\beta} \quad\left(a \in H_{11} ; \alpha, \beta \in I \cup \Lambda\right)
$$

Then, because of (9),

$$
\begin{aligned}
(a ; \alpha, \beta) \theta(b ; \beta, \gamma) \theta & =\gamma_{\alpha} a q_{\beta} \gamma_{\beta} b q_{\gamma}=r_{\alpha} a b q_{\gamma} \\
& =(a b ; \alpha, \gamma) \theta .
\end{aligned}
$$

From this and (10), it follows that θ is a partial homomorphism of B into D. Moreover, $B \theta=D$, since $B \theta$ contains all the elements $r_{i} a q_{\lambda}$ of (8).

As described in $\S 3.3$ of [2], if we adjoin a zero element 0 to a Brandt groupoid B, defining $a b=0$ if $a b$ is undefined in B, we obtain a Brandt semigroup B^{0}, that is, a completely 0 -simple inverse semigroup. The following is immediate from Theorem 2 and the first assertion in Theorem 1.

Corollary 1. A semigroup with zero is a partial homomorphic image of some Brandt semigroup if and only if it is regular and 0 -bisimple.

As defined in [2, p. 93], a partial isomorphism is a partial homomorphism which is one-to-one and onto. Not every regular \mathfrak{D}-class is a partial isomorphic image of some Brandt groupoid, and the question of telling which ones are remains unsettled. The next theorem gives a sufficient condition.

Theorem 3. Let D be a regular D-class of a semigroup S with the property that it is possible to set up a one-to-one correspondence between the \mathcal{R}-classes R of D and the $\&$-classes \& of D such that if R and L correspond, then $R \cap L$ contains an idempotent. Then D is a partial isomorphic image of the Brandt groupoid having the same structure group as D and the same number of \mathbb{R}-classes (and \&-classes) as D.

Proof. By hypothesis, we can index the \mathcal{R}-classes and the \mathscr{L}-classes of D by the same index set I, such that for each i in $I, R_{i} \cap L_{i}$ contains an idempotent e_{i}. The \mathscr{C}-class $H_{i i}=R_{i} \cap L_{i}$ is then the maximal subgroup $H_{e_{i}}$ of S containing e_{i}. Let $1 \in I$, and pick q_{i} in $H_{1 i}$ in any way for i in $I \backslash 1$, and let $q_{1}=e_{1}$. Let q_{i}^{\prime} be the inverse of q_{i} in $H_{i 1}$; such exists since both H_{11} and $H_{i i}$ contain idempotents [2, Theorem 2.18, p. 60]. Take $B=\mathscr{M}^{0}\left(H_{11} ; I, I ; \Delta\right) \backslash 0$ and define $\theta: B \rightarrow D$ by

$$
\begin{equation*}
(a ; i, j) \theta=q_{i}^{\prime} a q_{j} \quad\left(a \in H_{11} ; i, j \in I\right) \tag{11}
\end{equation*}
$$

Since every element of D is uniquely expressible in the form on the right-hand side of (11), and $q_{j} q_{j}^{\prime}=e_{1}$, we see at once that θ is a partial isomorphism of B onto D.
B is unique, to within isomorphism, since any Brandt groupoid is completely determined by its structure group and the cardinal number of its \mathbb{R}-classes (or \mathcal{L}-classes).

Corollary 2. Every 0 -bisimple inverse semigroup S is a partial isomorphic image of the Brandt semigroup having the same structure group as S and the same number of idempotents as S.

Proof. The hypothesis of Theorem 3 is satisfied by any inverse semigroup [2 , Corollary 2.19, p. 60]. For 0 -bisimple inverse semigroups, in particular, for Brandt semigroups, the sets of R-classes, \mathfrak{L}-classes, and nonzero idempotents all have the same cardinal.

We conclude with an example to show that a regular 0-bisimple semigroup may be a partial isomorphic image of a Brandt semigroup, but not of one having the same structure group.

Let $B=\prod^{0}(E ; I, I ; \Delta) \backslash 0$, where $E=\{e\}$ is a one-element group, and $I=\{1,2\}$. Let $S \backslash 0=H \times E$, where H is a cyclic group $\{e, a\}$ of order 2 , and E is a right zero semigroup of order 2 . We may represent the elements of S as pairs $(x ; i)$ with $x \in H, i \in I$, multiplying as follows:

$$
(x ; i)(y ; j)=(x y ; j) \quad(x, y \in H ; i, j \in I)
$$

Define $\theta: B^{0} \rightarrow S$ by

$$
\begin{array}{ll}
(e ; 1,1) \theta=(e ; 1), & (e ; 1,2) \theta=(a ; 2) \\
(e ; 2,1) \theta=(a ; 1), & (e ; 2,2) \theta=(e ; 2)
\end{array}
$$

and $0 \theta=0$. Clearly θ is one-to-one and onto, and it is easy to verify that it is a partial homomorphism.

On the other hand, S cannot be a partial isomorphic irnage of any Brandt semigroup B^{0} having structure group of order 2. For B must then have order twice a square, whereas $S \backslash 0$ has order 4.

References

1. H.-J. Hoehnke, Zur Theorie der Gruppoide. I, Math. Nachr. 24 (1962), 137168; III, Acta Math. 13 (1962), 91-100.
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I. 1961.

Tulane University

EVERY STANDARD CONSTRUCTION IS INDUCED BY A PAIR OF ADJOINT FUNCTORS

H. KLEISLI

In this note, we prove the converse of the following result of P. Huber [2]. Let $F: \mathfrak{K} \rightarrow \&$ and $G: \& \rightarrow \mathscr{K}$ be covariant adjoint functors, that is, functors such that there exist two (functor) morphisms $\zeta: I \rightarrow G F$ and $\eta: F G \rightarrow I$ satisfying the relations

$$
\begin{align*}
& (\eta * F) \circ(F * \zeta)=\imath * F, \tag{1}\\
& (G * \eta) \circ(\zeta * G)=\iota * G .
\end{align*}
$$

Then, the triple (C, k, p) given by

$$
C=F G, \quad k=\eta \quad \text { and } \quad p=F * \zeta * G
$$

is a standard construction in \mathcal{L}, that is, C is a covariant functor, $k: C \rightarrow I$ and $p: C \rightarrow C^{2}$ are (functor) morphisms, and the following relations hold:

$$
\begin{align*}
& (k * C) \circ p=(C * k) \circ p=\iota * C \tag{3}\\
& (p * C) \circ p=(C * p) \circ p \tag{4}
\end{align*}
$$

This standard construction is said to be induced by the pair of adjoint functors F and G. For further explanation of the notation and terminology, see [2], or the appendix of [1].

Theorem. Let (C, k, p) be a standard construction in a category \mathcal{L}. Then there exists a category \mathfrak{K} and two covariant functors $F: \mathcal{K} \rightarrow \mathcal{\&}$ and $G: \mathcal{L} \rightarrow$ K such that
(i) F is (left) adjoint to G,
(ii) (C, k, p) is induced by F and G.

[^1]
[^0]: Received by the editors December 30, 1963.
 ${ }^{1}$ This work was supported by the National Science Foundation grant GP 1791.

[^1]: Received by the editors March 2, 1964.

