A SHORT PROOF OF THE JAMES PERIODICITY OF $\pi_{k+p}(V_{k+m,m})^1$

MARK MAHOWALD

Let $V_{k+m,m}$ be the Stiefel manifold of *m*-frames in k+m Euclidean space. The purpose of this note is to give a short proof of the following theorem of James [2].

THEOREM. If p < k-1 and m < k, then $\pi_{k+p}(V_{k+m,m})$ is periodic in k of period $2^{\phi(m-1)}$, where $\phi(n)$ is the number of integers s such that s=0, 1, 2 or $4 \mod 8$ and $0 < s \le n$.

REMARK. Since $\pi_{k+p}(V_{k+m,m}) \cong \pi_{k+p}(V_{k+p+2,p+2})$ for $m \ge p+2$, the periodicity theorem can be sharpened to read $2^{\phi(p+1)}$ if $p+2 \le m$.

PROOF. It is known [3] that the (2k-1)-skeleton of $V_{k+m,m}$ is of the same homotopy type as that of $P_{k+m-1}^{t} = P_{k+m-1}/P_{k-1}$, where P_n is the real *n*-dimensional projection space. On the other hand, P_{k+m-1}^{t} is the Thom complex of kH_{m-1} (which we will write as $T(kH_{m-1})$), where H_{m-1} is the Hopf bundle over P_{m-1} . To see this, observe that $P_{k+m-1} - P_{k-1} = kH_{m-1}$, from which the statement follows immediately. Now $(k+2^{\phi(m-1)})H_{m-1} = kH_{m-1} \oplus 2^{\phi(m-1)}I$, where I is the trivial line bundle over P_{m-1} [1]. Hence $T((k+2^{\phi(m-1)})H_{m-1})$ $= \sum_{k=1}^{2^{\phi(m)}} T(kH_{m-1})$. Now the theorem follows from the suspension theorem.

References

1. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632.

3. J. H. C. Whitehead, On the groups $\pi_r(V_{n,m})$ and sphere bundles, Proc. London Math. Soc. (2) 48 (1944), 243-291.

NORTHWESTERN UNIVERSITY

Received by the editors March 6, 1964.

¹ This work was supported in part by the U.S. Army Research Office (Durham).

^{2.} I. M. James, Cross sections of Stiefel manifolds, Proc. London Math. Soc. (3) 8 (1958), 536-547.