
SOME PROPERTIES OF CERTAIN SETS
OF COPRIME INTEGERS

ROGER C. ENTRINGER1

1. Introduction. The set P(n) of all primes less than or equal to «

has the obvious property that it contains exactly one multiple of

each prime less than or equal to w. We use this partial description of

P(«) as a basis for the following

Definition 1.1. An increasing sequence {oi, • ■ ■ , ak} of integers

greater than 1 is a coprime chain iff it contains exactly one multiple

of each prime equal to or less than ak.

The following is a list of all coprime chains \au ■ • ■ , a*} with

a*ál3.

{2};
2,3};
3,4};
2,3,5}, {3,4,5};
5,6};
2,3,5,7}, {3,4,5,7}, {5,6,7};

2Í5Í7Í9},' {4,5,7,9}, {5,7,8,9};
3,7,10}, {7,9,10};
2,3,5,7,11), ¡3,4,5,7,11},  {3,5,7,8,11},  {2,5,7,9,11},  {4,5,7,9,11};
5,7,8,9,11}, {5,6,7,11}, {3,7,10,11}, {7,9,10,11};
5,7,11,12};
2,3,5,7,11,13),    {3,4,5,7,11,13},    {3,5,7,8,11,13},    {2,5,7,9,11,13};

{4,5,7,9,11,13},    {5,7,8,9,11,13},    {5,6,7,11,13},    {3,7,10,11,13};

{7,9,10,11,13}, {5,7,11,12,13}.

The notation ^4(«), B(n), etc., will be used to designate coprime

chains having « as largest member.

In this paper we are mainly concerned with finding functions

asymptotic to the sum of the rth powers of the members of a coprime

chain A («). A later paper will deal with the number of coprime chains

with largest member «.

All assumed results are well known and can be found in [l].
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2. The sum of powers of members of a coprime chain. The brief

table of coprime chains given in the introduction suggests that a co-

prime chain A («) has, asymptotically, ir(w) members. We will prove

a stronger theorem but we first require the

Lemma 2.1.

r+l

22 pr ̂  _- , r >   _   1.
«n (r + 1) log n

Proof. We note that for r = 0 this result is just the prime number

theorem. For r> — 1 partial summation gives

X) PT = Tt(n)nT - r j   7r(/)*r_1 dt.
Pin J i

But, since

JCn  /  1                1        \               «m
ir(/)/r-1 dt~ \   r[-) dt ~-»

t                        J»     Vlogi      (r + 1) log2 tj          (r+l) log «

we have the desired result.

Theorem 2.2.

/nUr+l)li\

Z «=T,r + o(l-),
a€i(n) vsn \    lOg M    /

where c=l for —Kr¿0 and c — 2 for r>0.

Proof. Partition A («) into the sets P = {pQA («) | p is prime} and

M=A(n)-P. Then

E   ̂  = X />*■ - X) />' +  Z ™t-
a£A(n) psn        psn;p$P mGAf

Each member of M is divisible by some prime less than or equal to

V« and, since the members of M are coprime in pairs, M has at most

7r(V») members.

(i) Assume — 1 <r ¿0. For each m in M choose a prime divisor q

oí m. Then

/MCr+l)/2\

2>'á Eí-á E^oh-)
meJf m€Ji psVn \ l0g w /

by Lemma 2.1.
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To complete the proof of this part of the theorem we note that

there are at most ir(y/n) primes p satisfying V»<pén, pEP. Thus

E   r* T.P-+    E    r = o(-—).
P£n;p<£P psVn V»<!>Sn;p(£P \ lOg «  /

(ii) Assume r>0. Choose «0>22/r. Then, for «>«o,

Eir- E v- E í'á  E <*r ^ E/>'+ E «.
p¿n PSV" V"<PS» aEA (n) p£n m€üí

/ nr+1'2\
¿Wá nrir(y/n) = 0 (-)

meAf \ log « /

Now

îr+l/2\

.log)

and

/n(H-i)/2\                                                  /nr+1l2\

¿^ p' = 0[-),   which gives    JT, P' = ° (-) •
psVn \  log «   / ^Vn \l0g»/

This completes the proof of the theorem.

Applying Lemma 2.1 to the above result we obtain the

Corollary 2.3.

nr+X

2_j   ar-,        r > - 1.
a€A(n) (f +   1) log «

As the next theorem shows, Theorem 2.2 is the best possible, in

that no error term of lower order will suffice.

Theorem 2.4. For all sufficiently large n, there exist coprime chains

A(n) and B(n) such that

E *r- E br
aEA(n) bGB(n)

w(cr+l)/2

log n

where c is defined as in Theorem 2.2 and Cx is a constant depending on r

only and is positive for —Kr^O.

Proof. Let {qi, • • • , qk-i} be the set of primes less than « and not

dividing w. Let a, = g<[log n/log «<>, bi = qit i = \, • • ■ , A —1, ak = bk=n.

Then A(n) = {au • • • , ak} and B= {bi, • • • ,bk\ are both coprime

chains.

(i) Assume — Kr<0. Then
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E «r- E ¿r

=   X ¿r —   E PT ~   E />r[log n/loS pl  +   E  £ riloen/Io8Pl

jKn pin p<n p|n

è  ZP'-Z:
PSVn pl»>

y^    Ar [log re/log p]

{1 + o(l)]n^+1)'2       _ _
;> J-L_!-Z i _  Z ^dos »/>■>«p-i)

'T '   , pin PiV»
-log «

2

2{l + o(l)}  «<r+1>/2       _ . .   -4f    «fr+D/2
^ --— —— - E «rrr = {i + o(i)}-

f + 1 log «       psvn 1 — r2    log M

(ii) Assume r >0. Then

>     y~l   y,r[log n/log p]   —   Y"* 7>r [log n/log p]   _ V"1     ArE   ar-    E   *
PáV« pin

(r+l)/2\

psVn

/w(r+l)/2\

â Ef-E^'-o--)
piV" pin \ log M /

^{l + o(l)}

=   {1 + 0(1)}

7r+l/2

(r + *) log :
+ 0(«r log n) + 0(«(r+1)/2)

»r+l/2

2r + 1   log «

The above theorem is also valid for r = 0, as will be shown in

Theorem 3.5.

The first major difference between coprime chains and sets of con-

secutive primes becomes apparent in the following

Theorem 2.5. If, for each n, coprime chains A(n) and B(n) are

chosen so that Eo<mm 1/aand E&eBw 1/b are maximal and minimal,

respectively, then

E   — ~ l°g l°g n   ana"      E-> log 2    as   n —* » .
a(=A(n)   a leB(n)    b

Proof. Clearly A («) — {«} is the set of primes less than w that do

not divide «. Hence
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E  — = E --E —+ —= loglogn- E -+o(i).
o6A(n)    a PSn    P P\n   P « p|n     P

Since « has no more than 2 log « distinct prime divisors, it follows

that

E — = o0°g log loS2 M),
pin     #

for all sufficiently large w. Thus

X   — ~ log log «.
o£A(n)    a

To complete the proof we now consider any coprime chain B(n)

chosen so that E&sbw 1/& is minimal for fixed » and note that 23(«)

can contain no number less than or equal to y/n. We define P and

M as in the proof of Theorem 2.2. Then

î>es(n)   0        pep />       meiif rn

-Ef    I    >(ïi)Vn<J>Sn   ? Vn<PSn;PÍP    ? \ mgJlí V^/

_ 1 /7r(\/rc)\
= log2-        E       T-+0(-V^)

= log 2 - S — + 0(1).
Vn<PSn;p£P    P

Again, using the fact that M has at most rr(y/n) members, we have

,_, 1 /ir(Vn)\E     - = o(^-^Wi).
V"<ps

Hence

2   — —> log 2    as   « —» 00,
6eB(n)   Ô

and the proof of the theorem is complete.

If {.¡4(w)} is any sequence of coprime chains, then the sequence

whose members are E»e¿(») a? is bounded for r < — 1, but for certain

sequences {23(«)} we may obtain a more precise result.

Theorem 2.6. There exists a sequence {23(«)}  of coprime chains
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such that the sequence whose members are E'ss(n) br converges to 0 for

allr<-l.

Proof. Assume r< — 1, 0<e<l given. Choose «0 so that n%+1)/2

<e/log 2. Let \B(n)} be a sequence of coprime chains chosen so that,

for fixed w, E&esw 1/& *s minimal. By Theorem 2.5 there is an «i so

that E&6B(n) l/&<€+log 2 for all «>«i. Since P(w) contains no

number less than or equal to \/n we have bl+r <n{r+l)l2 for all b in

P(«). Thus, for all «>«0«i, we have ¿>r<(l/6)e/log 2 for each b in

P(«) and, hence,

e                   1                    e2
0 <    E   &r < ;—-   E   — < « +-; < 3e,

6eB(n) log 2  ¡,<=B(n)    0 log 2

and the proof is complete.

3. Coprime chains of maximal and minimal length.

Definition 3.1. For each «>1 choose coprime chains A(n) and

P(ra) so that E"S^(n) 1 and E&gboo 1 are maximal and minimal,

respectively. Define

m(n) =    E   1    and    l(n) =    E   !•
o£^(n) 6eB(n)

Now w(w) and Z(«) are about the same size; more precisely, setting

r = 0 in Corollary 2.3 gives w(«)~Z(w)~«/log «. However, we can

make more precise statements about both m(n) and l(n).

Theorem 3.2. l(n) assumes every positive integral value.

Proof. From the table in the first section, 1(2) = 1 and, since /(«)

—♦», it suffices to show Z(«-f-l) ^/(«) + l, «>1.

Let {ai, ■ • • ,ak = n} be a coprime chain of minimal length with ait

i = l, • • • , A —1, square-free. Let bi = a¡/(ai, «+1), t = l, • • • , A—1.

Then the members of P(»+l) = {bi, • • • , bk-i, n, «+lj are rela-

tively prime in pairs and every prime less than or equal to w+1 di-

vides some member of B(n +1). Thus, if all l's are deleted from

B(n + 1) and the remaining members are properly reordered, we ob-

tain a coprime chain. Then l(n+l)¿k + l=l(n) + í and the proof

may be completed by induction.

Theorem 3.3. m(n)=ir(n)— co(«) + l, where co(n) is the number of

different prime factors of n.

Proof. Clearly a coprime chain of maximal length can be con-

structed by using'only « and all primes less than and relatively prime

to «.
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Corollary 3.4. m(n) assumes every positive integral value.

Proof. Letting n = pk in the previous theorem we obtain m(pk) = A.

In Theorem 2.4 the restriction r^O is unnecessary in view of the

following

Theorem 3.5. Given e>0, m(n)—l(n)>(I —e)y/n/log « for all

sufficiently large «.

Proof. If {ax, a2, • • • , a^k-i, a2k, a2k+i, •••,«} is a coprime chain

and a2k<\/n, then {a^, 0304, • • • , a2k-ia2k, a2k+i, •••,«} can be

reordered to form a coprime chain. Now the coprime chain containing

« as largest member and all primes less than and relatively prime to

« contains at least ir(-\/n) — co(ra) — 1 members less than y/n. By pair-

ing these members as indicated above we can form a coprime chain

with at most m(n)— ^[ir(Vn)— co(») — l] members. But since «(»)

< 2 log « we have

1 y/n , ,
/(«) ^ m(n)-[ît(\/m) — 2 log n — 1] = m(n)-{1 + o(\) \.

2 log«
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