
NATURAL DEDUCTION, INFERENCE, AND CONSISTENCY

ROBERT L. STANLEY

1. Introduction. This paper presents results in Quine's element-

hood-restricted foundational system ML,1 which parallel the im-

portant conjecture and theorem which Takeuti developed in his

GLC, for type-theoretic systems, and which recur in Schütte's STT.

Takeuti conjectured in GLC that his natural deduction subsystem,

which does not postulate Modus Ponens or any clearly equivalent

inference-rule, is nevertheless ponentially closed.2 Further, he showed

that if it is closed, then the whole system, including classical arith-

metic, must be absolutely consistent.

It is especially easy to establish the "coherence" of suitable, very

strong subsystems of ML—that is, that certain (false) formulae

cannot be proven under the systems' simple, natural deduction rules.

Presumably it is not known whether or not these subsystems are

ponentially closed.8 If, in fact, they are closed, then they are all

equivalent to ML, their coherence implies its coherence, and that in

turn implies the consistency of ML and of arithmetic. Proof of such

consistency, though much sought, is still lacking. Further, and most

important, this inference-consistency relationship suggests the pos-

sibility that suitably weakened varieties of these subsystems may be

provably consistent, yet usefully strong foundations for mathe-

matics.

2. General argument. ML and other foundational systems for

mathematics can be developed by natural deduction, in the same

manner as SF. ML conveniently displays the inference-consistency

property under examination, which emerges typically in such de-

velopments.4

Presented to the Society, August 29, 1963; received by the editors February 4,

1964.
1 The abbreviations 'ML', 'GLC, and so on will be used to refer ambiguously to

the systems of the articles listed in the bibliography, and to the articles themselves. In

any particular case, which sense is meant should be clear from the context.

2 Which is to say, all ponentials of directly provable theorems are themselves di-

rectly provable.

3 Systems can be constructed which are pathologically strong but still ponentially

open, and others, which are impractically weak but ponentially closed (see §4 below).

As for healthy, middle-strength subsystems, the question seems to be open.

4 Certain minor, artificial changes in the presentation of SF render it amenable to

this same line of argument. It is easy to portray ML briefly, however, besides which

ML seems to me to be attractively more flexible, powerful, and natural as a founda-

tion for mathematics.
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In SF, Modus Ponens is postulated in effect by the rule FRM. To

drop FRM and strengthen the other rules somewhat,6 creates a sub-

system which is surprisingly strong, considering that it lacks any

rules for inferring theorems from other theorems in the usual way. In

such subsystems, however, simple formulae occur which typically

cannot be proven as theorems. Such a formula and its unprovability

are detailed below in §4, for an appropriate subsystem of ML.

Since this subsystem of ML includes all theorems which are in-

stances of ML's absolute postulational principles, to postulate ponen-

tial closure of the subsystem would generate all theorems of ML. If

the subsystem already has the property of being ponentially closed,

then its theorems already include all those of ML, its unprovable

formulae are unprovable in ML, and therefore ML must be ab-

solutely consistent by the traditional test that it contains the preposi-

tional calculus, Modus Ponens, and formulae which are not theorems.

ML contains classical arithmetic, so if the subsystem is ponentially

closed then arithmetic is absolutely consistent. Since proof of arith-

metic's consistency would require methods as strong as transfinite

induction, such methods would be needed for proof that the sub-

system is ponentially closed. Furthermore, even such methods have

not yet produced a proof of ML's consistency.

In sum.anyproof that Modus Ponens holds in this natural deduction

subsystem would have to be of transfinite strength, and would prove

correlatively the absolute consistency of ML.

3. The natural deduction systems. When built in SF's style of

natural deduction, ML still uses exactly its own same notation,

primitives, and formal definitions. Instead of from postulational prin-

ciples and Modus Ponens, however, theorems evolve individually

under rules for drawing particular consequences, where these rules

are presented and operate exactly as in SF.

3.1. Rules for ML.
FR J,.    // (a proof-line is given in which is enjoined6 an occurrence

of) [(<p 1$)], then (that proof-line may be copied below the

original line, except with the enjoined occurrence replaced

by an occurrence of) [(~<p-~if>)]; that is,7

s See footnote nineteen, page 136, in SF.

• As in SF, a formula which (in abbreviated form) is composed exclusively from

occurrences of '■,' V and various formulae, is called an enjunct of those formula-

occurrences, and they are enjoined in it.

7 "Deduction-bars" are convenient, familiar, and will be used here to express

rules. The parenthesized qualifications will still apply implicitly in each usage, and

other qualifications will be explicated wherever necessary.
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FR= .    -; if [(a = a')] conjoins over <£,9 and <p is either [(«GiS)l

4, —      or f(aëi8)l.
a

(fea«)
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<t>
F RM.     -, for any proof-line ó, and formula \p.

(0-^V—A))

As in SF, an absurdity is any enjunct which, under some or no dis-

tributions of '•' through 'V'i becomes a disjunction of contradictory

alternatives—that is, in each alternative are conjoined occurrences of

some formula <p and also [~$1. Finally, the one postulational prin-

ciple is:

If <p has no free variables, and [~$1 leads to an absurdity under the

FR-rules, then 0 is a theorem.

The main reason for including F RM has been to ensure that

Modus Ponens is available, so deleting FRM removes the guarantee

that the system is ponentially closed. FRM is also a great convenience,

however, for helping to derive several truth-functional "auxiliary"

rules, plus numerous "formal" rules, the latter mostly being paired

one-to-one with the system's formal definitions. Without these de-

8 Substitution needs to be characterized for the primitives of ML. Wherever any of

the free ^-occurrences in <j> are covered by quantifiers whose variables occur free in

f, take an alphabetical variant of 0, shifting the bound variables of such quantifiers to

new variables (say by alphabetical order) which are not free in f. Now [<i>?Ail is

like this variant of cj> (or like <j> itself if there are no such awkward quantifiers), except

for having free occurrences of f wherever the variant (or <t>) had free ^-occurrences.

9 If occurrences of <t> and \¡/ are linked (under abbreviation) by ' • ' only, then

the ^occurrence conjoins over this i^-occurrence and all formula-occurrences which are

enjoined in it.

10 'SR' means "stratified and restricted". As ML puts it, a formula is SR when it

"is formed from a stratified formula by restricting all bound variables to elements."

A term f is SR if r is a variable, or if f is [á<¿>l and <f> is SR.
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rived, short-cut rules, any ordinary work within the system would

become intolerably lengthy, indeed physically impossible. Some of

the most frequently used auxiliary rules are :

<t> .,      foW)
re.     -       rid.    -

(<b-<b) <p

(*■*) (*•*)
-       rcc.    -

fo-WVx)) (W-Vx)-*)

nc.

rd.
((f*)V(fx))       ((*-*)V(x-*))

(*Vtf)
ria.    -; if ^ is an absurdity.

Rules for the defined, truth-functional connectives are exactly the

same in ML as in SF. The quantificational rules differ correspond-

ingly as the systems ML and SF differ. R( ) for ML is the same as

FR( ) above.

'—'( 3a)0                           ( 3a)<b
R 3-    -> for any £ ;-> for any new ß.

f^s(p  - if)  —-

a a

In both R( ) and R3, f may be any term, not just stratified ones as

in SF. The weak instantiation portions of R( ) and R3 are the same

in ML and SF. Most of the other rules listed in SF undergo change,

as their ML-correspondents show.

R=.        -—-——i for any 6;
(dQç-eQvV-eeï-een)

(£*n)
for any new a.

(ctQÇ-ae.r)-\/-ct(=Ç-aQri)

tRS = '.     -! if i(a = f)l or [(f=a)l conjoins over <b, and <j> is either

*   « [(aQß)] or [(aeß)l

RS=.      -> if f(f = i?)| conjoins over <¡>.
t

4> —
a
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RG
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RC- (analogous to R = ).

(fëtf)
R

R;.

R'

RX.

G-iF)

(f » = f,V)    ií í(fGF)l, rCijGTOl and ffo'GTOl conjoin over-j
(f = f ' ' V — v')    the given formula-occurrence ;

(r,v * f,V)

âfa(ï,r,) ~afo(ï, V)

\ a,ß/ \ a,ß/

R( -u- , if i(ôeF)l and    U—GFJ    conjoin

(rex-u'»)

(fë^.V.reij-^)

over the given formula-occurrence;

-i if F(eGF)] and 17,,— G^Ylcon-

join over the given formula-occurrence.

A«rM) ~x«rM)

fr?,ÖGF-, = r ^       (~MGF)V~(^ = f-^))

3.2. PÄe subsystem ML'. When FRM is withdrawn from the set of

foundation rules, not all of the derived rules still hold. In general, an

infinite variety of subsystems is suggested then, corresponding to the

infinitely many subsets of derived rules which could be selected as

foundation rules for a subsystem. Only one specimen will be de-

veloped here; the careful investigation of extended spectra of such

subsystems appears important, but probably very long-range. For

the present subsystem, ML', the postulated rules will be: FR ! ,

FR( ), RS = ', FRG. Rt',11 re and rd. From this set, proofs of theo-

11 I believe that this rule does not need to be given foundational status. Conjunc-

tion of [(fgjif)] with f(fG^)]i [(fGl)li or any other such positive elementhood-

implying clause leads to absurdity, thereby satisfying all anticipated proof-needs.

I have been unable to derive [(¿"giV)! from f(fgif)] under the ML'-rules alone,
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rems appear to go through as smoothly as before. Of course, whether

all proofs in ML can be supplanted by proofs in ML' remains the

crucial, open question—to know that the answer is affirmative would

be to know that ML, and arithmetic, are absolutely consistent.

4. Coherence of ML'. It is quite easy to show that ML' is coherent

—that is, that there exist formulae of ML' which cannot possibly

have proofs in ML'. One such formula is '(x)(xQx)'.

In general, here, quantifications and membership formulae will be

called even, \(<j> |i/0l will be odd just in case <p and \p are both even,

and \(<t> | \p) ] even when <p and \p are odd. Many formulae are neither

even nor odd, as [(<£D<£)], and \(<p-~<p)]. [~<p] is [(<£ |<£)1, and

thus is odd when <p is even, even when <p is odd. Any enjunctive con-

text proves to be even, so that an enjunct as a whole is even if and

only if all its enjoined formulae are even, and is odd just when they

are all odd.

Any proof of '(x)(x Q x)' must commence with its denial,

'~(x)(x£x)'. As the denial of a quantification, this line, as a whole,

is odd.

FR I, re, and rd can be applied to odd formulae, but they cannot

act on a given odd formula and yield an enjoined even formula. If

[(<£ I'/')] is °dd (or even), then FR J, gives f('~<?i-~^')], which will
be odd (or even) correspondingly; if <p is odd (or even), so is its

result [(<p-<p) ] under re; and similarly for rd. Thus oddness and even-

ness are "invariant" under these three rules, and, in fact, under all

valid truth-functional rules. Now an odd occurrence |~(a)<fi] can

indeed give an even result

hfl
under the weak half of FR( ), in case <p is itself odd. In the proof-line

'~(x)(x£x),' however, '(x£x)' is even, so the application of FR( )

could only yield the odd result '(x gx)'.

The other foundation rules, FR(E, Ri', RS = ', and the strong half

of FR( ) cannot operate in the absence of enjoined, even, formula-

occurrences. FRG and Rt' both need an enjoined occurrence of the

form Idteâtp)], which is defined by \~(3ß)(CQß.(a)(aQß.D<p))]
if f is a variable, or else by [•—'(3/3)(/3 = f -ßQacp)] if f is an abstract.

In either case the prefix [<~(3ß)] expands into f-— -— C/3)'— 1 » so that

however, when f is an arbitrary abstract. Since f(fgif)] arises frequently, whereas

[(fgT/)] is the preferred elementhood form in the whole development, Ri' will be

taken as initial here, even though its irredundancy is uncertain.
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the whole formula is even. For RS = ', either f(a = Dl or [(£=«)!

must be available. Under the definition of ' = ', an enjoined quantifica-

tion, and therefore an enjoined even formula, is involved in either

case. Similarly for the strong portion of FR( ), which requires pre-

cisely an enjoined occurrence of a quantification.

Since the given proof-line is odd, the only rules which can be ap-

plied to it are FR [ , re, rd,12 and the weak portion of FR( ). Since

these rules preserve oddness in this application, all enjoined parts

must continue odd in the next line, and similarly through all further

lines. Every derivable line is, perforce, an odd enjunct.

In order that any enjunct be absurd, occurrences of some <p and

[~(j>] must be enjoined in it. If any such <j> is odd, then |~$] is

even, and vice ver sa. In every line which can evolve from '~(x)(ïêx)',

however, every enjoined formula is odd, and none is even. Therefore

no absurdity can be reached below '~(x)(x£x)', under the rules of

ML', and therefore, finally, ML' contains formulae such as

'(x)(xQx)' which cannot be proven in ML'.

It is suggestive to drop the SR-restriction in FR£. This modifica-

tion creates an inconsistent system, with, for example, '(RQR-RsR)'

being provable, where 'R' abbreviates 'x(xgx)'. Nothing changes,

however, in the proof-status of '(x)(xQx)\ so it remains unprovable.

Consequently, this inconsistent variation of ML clearly cannot be

ponentially closed, or else all formulae, including '(x)(x£x)', would

be provable from the contradictions, via Modus Ponens and the

propositional calculus. Oppositely, if all rules except FR J, are

dropped, still enough of ML' remains to give exactly the proposi-

tional calculus, which is ponentially closed. ML' lies somewhere be-

tween these two poles. Conceivably it may be both consistent and

ponentially closed, or perhaps consistent but ponentially open, lack-

ing some subset of the theorems of ML. At the worst, of course, it

might even be inconsistent yet ponentially open—both too strong (in

theorems) and too weak (in inference).

A very important line of investigation is the study of various strong

systems which, as was suggested in §1, are weaker than ML'. Specif-

ically, useful subsystems for which Takeuti's conjecture is actually

false are especially interesting, because proof of such systems' con-

sistency would not entail the consistency of the full, ponentially

closed systems, hence might be attainable by elementary means. The

u rd can enter, via steps as follow: ~0, (0 l<j>)  (by Dl), (~0-~0)   (FR J, ),

(~<H<i-U)) (Dl). (~*-(~*-~*)) (FR1), (~0-(-<fil-<*•)) (D2), (~<i--~
(~~¿)) (DI), (~<¿>-~(~<í> |~<¿>)) (Dl), (~0-(~^V~0)) (D3), (~tf>—0.V.~0-
~¿) (rd). Dl, D2, and D3 are as in ML.
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question whether any particular subsystem is ponentially open or

ponentially closed is certainly important, but the open systems are

more promising and interesting than the closed, as candidates for

consistency investigation.

5. Summary comment. Methods of natural deduction are shifting

more and more of the strength needed for proving theorems, strength

traditionally drawn from the powerful rules for mediate inference,

into the provisions for direct, self-contained demonstrations of in-

dividual theorems. In the natural deduction systems discussed here,

this shift has led incidentally to a surprising result. Although the

regular system has become hard to distinguish in theorem-content

from its strong, "noninferential" subsystem, the two regions turn out

to be separated by a serious gulf when one considers the possibility

that they are identical—that the system and subsystem actually

may have the same body of theorems. Crucially involving consis-

tency, this gulf demands exploration as a possible boundary between

bodies of theorems which may prove to be consistent yet "strong

enough" for heavy mathematical use, and the traditional, inferen-

tially closed bodies which are too strong for acceptable consistency-

proof. Such exploration reaches considerably beyond the limits of the

present discussion.

Bibliography

GLC. G. Takeuti, On a generalized logic calculus, Japan. J. Math. 23 (1953), 39-96.

ML. W. V. Quine, Mathematical logic, rev. ed., Harvard Univ. Press, Cambridge,

Mass., 1951.

SF. R. L. Stanley, Simplified foundations for mathematical logic, J. Symbolic

Logic 20 (1955), 123-139.
STT. K. Schütte, Syntactical and semantical properties of simple type theory,

J. Symbolic Logic 25 (1960), 305-326.

Portland State College


