ON THE EXPRESSION OF A NUMBER AS THE SUM
OF TWO SQUARES IN TOTALLY REAL
ALGEBRAIC NUMBER FIELDS!

WERNER SCHAAL

Introduction. Let K be a totally real algebraic number field of
degree # and with discriminant d. Let a be an ideal of K which may be
integral or fractional. The number of solutions of the equation

E=u+r  (feq)

in numbers u, v € a is denoted by f(£, a). For x,, - - -, x, being posi-
tive real numbers the following theorem will be proved:

THEOREM.
i
0<t M) <apiql & 6w = dNa? o+ oo @) o+ Rl -y ).
(The index h always takes on the values 1, - - - , n if not otherwise indi-
cated.) For any §>0, %1 + - + x,—>x, then
R(xy, -+ +, 2,) = O((z1 + - - xp)n/ (nt1)+8)
holds.

This result has been already proved in [4] for the case n=2,
a=(1). There was also shown that

. R(xh x2)
lim sup ———
2172 © (xlxz) 1/4

For the proof of the theorem an identity given by Siegel in [5] for
real quadratic number fields is generalized to totally real algebraic
number fields. This identity will be applied to the problem in a sim-
ilar way as it was done in [4].

1. In what follows the real numbers ¢, - + -, ¢s are constants
greater than 1 which only depend on the field K and the ideal a if
not otherwise indicated. We define S(a)=a®+ - +a®,
N(@)=a® . . . a™ for numbers a ¢ K. Let r=n—1, and let
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2 We introduce Hecke's characters for a number «eK with respect to these unit
Ny °y N
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m
m = 2w
my
where m;, - - -, m, are rational integers.

The set of squares of all units of K forms a group G which may be
generated by the r independent units #y, - + -, #..2 For this purpose
let E be the r X% matrix (ef,“)), g=1,---,rip=1,---,n (see [2]),
and let

log| a® |
a =
log| a® |

Then following Hecke's definition we set

1) An(a) = exp{mTEa}.

If n € G it follows from the definition of the numbers &2 that
An(am) = Am(a).

Two numbers a, 850, 0 of K are called “associated” if their quo-
tient is an element of the group G. Otherwise «, § are called “not
associated.”

LeMMA 1. If x is a positive real number then

2 & 0) = 0()
N(§)sz
where the dash at the sign of summation indicates that the sum is to be
taken over a set of not associated numbers £ € a.

Proor. For every number « of K there exists a number ¢; and a
unit 7 € G which only depends on « such that the following # in-
equalities hold:

1/n i/a

écllN(a)I ) h=1,.--,n,

(h)
44

77(h) I

a | N = |
(see [6, Hilfssatz 6]). Because of
(2 fng, ) = (¢, a), neG

we may choose the set of not associated numbers £ such that the
following inequalities are satisfied:
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S =t <™ k=1, n

Whence we have

X s 2 f&a).
N()s= 0 <EM<epal/nial g
Since f(£, a) is the number of distinct pairs (i, ¥), , ¥ € a with £ =p2 42
it is sufficient to estimate the number of elements u € a which satisfy
the inequalities Iu("’l <cyxl p=1,:+.,n Letay, -+-, a, be a
basis of the ideal a. We have to estimate the number of distinct n-
tuples of rational integers (&, + - -, ks) for which the inequalities

—C2x1/2n< > k,,a;h) < 02x1/2", h=1---,n
=1
hold. Since |det(ef”)| = Na+/d#0 we obtain that there are at most
csv/x of such n-tuples. This proves the lemma.
For each character (1) we define the function

, J& DAn(8)
¥ ver

where by s=¢-+1i a complex variable is denoted. Applying the
method of partial summation it is an easy consequence of Lemma 1
that the functions ®,(s, a) converge absolutely and uniformly for
a>1.

Let R be the determinant

®,(s, a) =

1 logn - - -logn

: 5
° (n) T o)

1 logm " - - -logn.

moreover, we introduce the abbreviation

E,(m) = 2x Z mqex(f)’ p=1--,n
q=1
Then the following lemma holds:

LEMMA 2. Let %1, + * + , X, be positive real numbers and let

g m) = Y G0 I - 9.

0<tWz <1501 ¢ p=1

Then we have for o> 1:
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n +00 a+ic0

g(xy, + - - @) = 5 2 Dn(s, 0)

e I R I My * s My w—0 o—10

" —8+iEp(m)

TI *»

ds
=1 (s — 1Ep(m))(s +1- iEp(m))

Proor. The proof of the given identity proceeds on the same lines
as the proof in the case #=2 given in [5]. We define the column vec-
tors

(»)

k1 1 log ’71

k=|- y U= | y(p)= . (P=1,"',ﬂ),
; : “(p)
kr Ur lOg Nr

where &y, - - -, k, are rational integers and v,, - - -, v, are real vari-
ables. Making the substitution

(3) Xp = uexp{v"y@”}, = 1, RN (1

we observe that the function g(xi, - - -, x,) becomes a periodic func-
tion with respect to #;, - - -, v, because of property (2). The period
is 1 with respect to each of the variables. Furthermore, g(x;, - - -, %,)
is a continuous function and has piecewise continuous partial de-
rivatives with respect to o1, - - -, 9,. Whence g(xi, - - -, x,,) furnishes
an absolutely convergent Fourier series. Denoting the right-hand side
of (3) by t®(v) its coefficient is-given by:

1 1
= PR —aT,
(1) fo j; exp{ —v"m} KE(W%KIM f(& a)

I A = g2 (9))dv,y - - - dy,
p=1

-_-.j;l- .. j;lexp{—‘v"m} 2 f&a)

0N (§)<u—"

. i > fI (1 — @@ (y + E))doy - - - do,

cokpm—oo  0KER M) (p4E)<1  p=1

f f exp{ —uTm} i 2 g )

ki,oe ok~  OKN (§)<u™

fI(—-~)dv1-~dv,.

0<E® B (v+k)<1  p=l
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We are allowed to interchange the integration and the summation
with respect to ki, « - -, k. because the sum is finite. Making the

change of variables v,+k,—v,, ¢=1, - - -, 7, we obtain:
+o +o0

w@ = [ [ Tew{-mm) > g0
—o —0 0<EM® (v)<1

. H (1 — £@4@)(v))dvy + + - dy,.
p=1

Now we form the integral [yu™ la.(u)du for ¢>1. Making the
change of variables (3) we get:

v ARRRE A Il i

0<tMzp<1

. H (1 — £®x)dxy - - - dx,

p=1
n (&@m)—t

1 s—1—3Ey(m
- TR— > i 11 2 gor,)dn,

£ p=1v0

= TR l Pn(s, a) H [(s = $Ex(m))(s + 1 — iE,(m)) ]

r=1

The application of Mellin's inversion formula yields for o> 1:

an(u) = 2m| a — ] _+ (s, 0) II (s —iEy(m)) (s-+-1—iEylm))]-ds.
Since
g(xh AR xn) = i am(u) eXp{va} ’

My, sy TN p5=2—00

this proves the lemma.
Let

F(oy, - -, m) = 2 f(0).

0<tM <oy

Then we have
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1 1
(xl e o o x”)g<——-’ o e ey —)
X1 Xn

N X0 ) ()

0<EM<zy;al ¢ p=1

z Zn
> [t [Cre b
0<tW<ay;al & o) 3

1 Zn
f . e e f F(vl’ DY , vn)dvl DRI dvn.
0 0

An elementary calculation furnishes the result:

]

un Un
f f F(ar+ vy - -+, %0+ v)dvy - - - du,
0 0

n +c0 o+1i%0
>

2mi | R I my, e mp=—0 Y o—iw;o>1

()

a+1-iE,,(m) 8+1—iEp(m)

r (9p + %) %Xp
=1 (s — 1Ey(m))(s + 1 — iE,(m))

®,,(s, a)ds.

2. The left-hand side of (4) may be abbreviated by J. Since
f(£, a) =0 we obtain the inequality:

F(xl’""xn)é(yl"’yn)_l]-gF(xl'i'yl’""xﬂ+yn)‘

We observe from this inequality that the asymptotic behaviours of
F(xy, - - -, x,) and (31 - - - y,)~1J are the same. Therefore we shall
try to find an approximation of J. For this purpose the functions
®,,(s, a) are analytically continued over the whole s-plane. Let:

T n
O(z1, * + +, 2230) = D ex {— —— ) u®?% } ,
v 2P~ e 24

2, * * *, 2, being complex variables with Re 2z,>0, k=1, - - -, n;
then Hecke proved in [3]:

1 1 1
5) Oz, + + -, 513 0) =(z1--'zn)‘1/2®(—; sy —; ),

b
21 2, ad

where b is the ramification ideal of the field K. Well known calcula-
tions and the application of (5) lead to the equation:
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(@‘—) s, 0) TL TG — iEy(m)

T I R l p=1
bm u=00 1/2 1/2 2 o Wy,
= +f f [O(uny ey,
s(s—1) u=1 Y12 —1/2
n)v n)v, du
(6) ~un: I ~17,( ) sa) — 1]a" exp{—va}dv1 c o dy,—
%
u=00 1/2 1/2 2 (1o Wyv,
+f f ...f [@(u:,“ l.--17’_",...’
u=1 v —1/2 —1/2

n)v n)v, 1 —8 du

unf U -n,( ) ; ——) - l:lu"u ) exp{va}dv1 oo dy —

ab u

with
{1/" if my = cee=m, =0,
" 0 otherwise.

If m2+ - - - +m2>0 the right-hand side of (6) is an integral function
of s; if my= .- - =m,=0 there are two simple poles at s=0 and
s=1. So we recognize that ®,(s, a) is an integral function of s except
in the case m;= - - - = m,=0;P,(s, a) has a simple pole at s=1. An-

other immediate consequence of equation (6) is the functional equa-
tion

dNu2>1"2‘ n T(1 — s + iE,(m)) ( 1
- d_.(1—y5, ),

(7) @u(s,0) = ( . =1 I(s — iE,(m)) ;S—

which holds for all my, - - -, m,.

By equations (6) and (7) we can estimate the functions ®(s, a)
uniformly in my, - - -, m, in the infinite strip —e<oc=1+¢, ¢>0. If
we apply Phragmén-Lindelsf’s extension of the maximum-modulus
theorem to the functions ®,(s, a) we obtain the inequalities:

(8) | @m(o' + it, a) l = 64(6) fIl (1 + I I3 —Ep(m) l )l—¢r+c,

—eSoSl4em+ - +m>0.

Inequality (8) also holds for ®(s, a) if ltl 2¢5. (The calculations which
lead to (8) are given very explicitly for a similar case in [1].)

3. Now it is easy to investigate the asymptotic behaviour of the
right-hand side of (4) for (x; - - : x,)— . The path of integration
in (4) is replaced by a straight line in the critical strip whose point of
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intersection with the real axis may be ¢ =46, 0 < <1. Considering the
pole of ®(s, a) at s=1 we find:

1r'l n 2 2
=— + ) —x
2" dNasz_Il [(yP P) P]
n -{-Zoo S4io
9 + — ®n(s, a
©) 208 | R| mys- S sio (s @)
e+1—iEp(m) +1—5Ep (m)
. n (9o + %) P~ x; ? ds

=1 (s —1Ex(m))(s + 1 — iE,(m))
s=6+1, 0<6< 1.

The infinite sum in (9) can be easily estimated if one considers that
the following determinant does not vanish for 1 <k <n:

(1) [63] 1) (1) 1) [¢3] 1) 1)
€ — €1 € — €1 € — kg1 "€k — €a

(r) (r) (r) (r) (r) (r) (r) (r)
€ — €1 € — €1 € — €1 € — 6y

Then we obtain from (9)
1 b id n 2 n
(10) J = o d—N:{,,];Il [(p + 2) — 2] + 0( '],;Il (y» + x,,)‘“).
If we choose
yp = xp(xl P xn)_‘/(ﬂ"'l)’ p = 1’ ey n

and divide J by the product ¥, - - - y, equation (10) yields for
%+ %,— o and any §>0

J ™
11 = “ e X 0 e g, (D)
v Y1 O (dNa’)(x1 W)+ 0 ) )

Recalling the remark in the beginning of §2 we observe that (11) also
gives the asymptotic behaviour of F(xy, - - -, x,) for %, - - - x,—
and any §>0:

n

dNa?

F(xl’ PN ’xn) = ( )(xl ... xn) + O((xl .« .. xn)nl(u+l)+5)'

This proves the theorem formulated in the introduction.
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