HOMOTOPY FOR CELLULAR SET-VALUED FUNCTIONS

T. R. BRAHANA,¹ M. K. FORT, JR.,² AND WALT G. HORSTMAN³

1. Introduction. A. Granas asked the following question. If F is an upper semi-continuous set-valued function on a compact metric space M such that the image of each point of M is a proper subcontinuum of S^n , then is F "homotopic" to a single-valued continuous function? It was pointed out that care must be used in the definition of homotopy of set-valued functions, since the first natural candidate puts all upper semi-continuous set-valued functions into one class. In [3] and [2] studies were made of homotopies of set-valued functions subject to the restriction that H(x, t) be acyclic (with respect to homology over Z_2) for each $(x, t) \in M \times I$.

In this paper the homotopy problem is solved for those upper semicontinuous functions F for which each F(x) is a cellular subset of S^n . In particular, the class of cellular upper semi-continuous set-valued functions is partitioned into equivalence classes by the relation of cellular homotopy, each class contains single-valued continuous functions, and two single-valued continuous functions are in the same class if and only if they are homotopic in the usual sense.

A selection theorem which seems to be different from those discussed in the literature is proved in §2. It is shown that if F is upper semi-continuous on M and F(x) is a cellular subset of S^n for each $x \in M$, then there exists a continuous function $g: M \rightarrow S^n$ such that $g(x) \in S^n - F(x)$ for each $x \in M$. In addition to being the main tool used in the construction of the homotopies, this selection theorem is of interest in itself.

2. The selection theorem. A subset A of S^n is cellular if and only if there exists a sequence $E_1 \supset E_2 \supset E_3 \supset \cdots$ of topological *n*-cells such that $A = \bigcap_{k=1}^{\infty} E_k$ and, for each k, A \subset interior E_k .

Let M be an *m*-dimensional compact metric space and let F be a set-valued function on M such that:

(i) for each $x \in M$, F(x) is a cellular subset of S^n , and

(ii) F is upper semi-continuous.

A covering pair for F and M is an ordered pair (G, D) such that:

Received by the editors December 23, 1963.

¹ Supported by the National Science Foundation research grant G-10096.

² Professor Fort died on August 2, 1964. Research had been supported by the National Science Foundation research grant G-23790.

³ Supported by the National Science Foundation research grant G-10096.

(i) G is a finite open covering of M,

(ii) D is a function with domain G such that for each $U \in G$, D(U) is a topological *n*-cell which is contained in S^n , and

(iii) for each $x \in M$, if $x \in U \in G$ then $F(x) \subset D(U)$.

LEMMA 1. There exists a covering pair.

PROOF. For each $x \in M$, there exists a topological *n*-cell $\Delta(x)$ such that $F(x) \subset interior \Delta(x)$ and $\Delta(x) \subset S^n$. For each $x \in M$, there exists a neighborhood V(x) such that if $t \in V(x)$ then $F(t) \subset interior \Delta(x)$. $\{V(x) \mid x \in M\}$ is an open covering of M, and, since M is compact, this covering has a finite subcovering $G = \{V(x_1), \dots, V(x_k)\}$. We define $D(V(x_j)) = \Delta(x_j)$ for $j = 1, \dots, k$. It is easy to verify that (G, D) is a covering pair.

LEMMA 2. If (G, D) is a covering pair, then there exists a covering pair (G^*, D^*) such that:

(i) G^* is a star refinement of G, and

(ii) if $U \in G$, $U^* \in G^*$ and $U^* \subset U$, then $D^*(U^*) \subset D(U)$.

PROOF. Let λ be the Lebesgue number of the covering G. For each $x \in M$, there is a topological *n*-cell $\Delta(x)$ such that $F(x) \subset interior \Delta(x)$ and such that if $x \in U \in G$ then $\Delta(x) \subset D(U)$. For each $x \in M$, there is a neighborhood W(x) of x such that:

(i) W(x) is contained in the $\lambda/3$ -neighborhood of x, and

(ii) if $t \in W(x)$ then $F(t) \subset \operatorname{interior} \Delta(x)$. The set $\{W(x) \mid x \in M\}$ is an open covering of M and has a finite subcover $G^* = \{W(x_1), \cdots, W(x_k)\}$. We define $D^*(W(x_j)) = \Delta(x_j)$ for $j = 1, \cdots, k$. It is easy to verify that (G^*, D^*) has the desired properties.

Let F be an upper semi-continuous set-valued function on a compact finite-dimensional metric space M such that, for each $x \in M$, F(x) is a cellular subset of S^n .

THEOREM 1. There exists a single-valued continuous function $g: M \rightarrow S^n$ such that $g(x) \in S^n - F(x)$ for each $x \in M$.

PROOF. Let *m* be the dimension of *M*. It follows from Lemmas 1 and 2 that there are covering pairs $(G_0, D_0), \dots, (G_{2m}, D_{2m})$ such that for each *j*, $1 \leq j \leq 2m$: (i) G_j is a star refinement of G_{j-1} , and (ii) if $U_j \in G_j$, $U_{j-1} \in G_{j-1}$ and $U_j \subset U_{j-1}$, then $D_j(U_j) \subset D_{j-1}(U_{j-1})$.

We choose a finite open covering G of M such that G is of order m, G is a star refinement of G_{2m} , and no proper subset of G covers M. For each integer j, $0 \le j \le m$, we define $K_j = \{x \mid x \in M \text{ and } x \text{ is a mem$ $ber of at most } j+1 \text{ members of } G\}$. Each K_j is a closed subset of M, and $K_m = M$.

456

For each $V \in G$ and each integer j, $0 \leq j \leq 2m$, we select sets $\phi_j(V) \in G_j$ such that $\operatorname{St}(V) \subset \phi_{2m}(V)$ and $\operatorname{St}(\phi_j(V)) \subset \phi_{j-1}(V)$, for $1 \leq j \leq 2m$. We define $\Phi_j(V) = D_j(\phi_j(V))$ for each $V \in G$ and $j = 0, \dots, 2m$.

We are going to define (inductively) for each $j, 0 \leq j \leq m$, a mapping $g_j: K_j \rightarrow S^n$ such that, for each $V \in G$,

$$g_j[V \cap K_j] \subset \operatorname{Cl}[S^n - \Phi_{2j}(V)].$$

For each $V \in G$, we choose a point $p_V \in S^n - \Phi_0(V)$ and define $g_0(x) = p_V$ for each $x \in V \cap K_0$. Since $V \cap K_0$ is closed in K_0 for each $V \in G$, g_0 is continuous.

Now suppose $0 < j \le m$ and g_{j-1} has been defined. Let $\sigma = \{V_0, \dots, V_j\}$ be a set of j+1 distinct members of G such that $V_0 \cap \dots \cap V_j \ne \emptyset$. We define $H_{\sigma} = (V_0 \cap \dots \cap V_j) \cap K_j$ and $W_{\sigma} = K_j - \bigcup \{V \mid V \in G - \sigma\}$. Then W_{σ} is closed in K_j and H_{σ} is open relative to W_{σ} . The mapping g_{j-1} is defined on $W_{\sigma} - H_{\sigma}$ and $W_{\sigma} - H_{\sigma}$ is closed relative to W_{σ} . It is easy to see that

$$g_{j-1}[W_{\sigma} - H_{\sigma}] \subset \bigcup_{r=0}^{j} \operatorname{Cl}[S^{n} - \Phi_{2j-2}(V_{r})]$$
$$= \operatorname{Cl}\left[S^{n} - \bigcap_{r=0}^{j} \Phi_{2j-2}(V_{r})\right]$$

Since $\phi_{2j-1}(V) \subset St(\phi_{2j-1}(V_r)) \subset \phi_{2j-2}(V_r)$ for $r = 0, \dots, j, \Phi_{2j-1}(V_0) \subset \bigcap_{r=0}^{j} \Phi_{2j-2}(V_r)$. Therefore, $g_{j-1}[W_{\sigma} - H_{\sigma}] \subset Cl[S^n - \Phi_{2j-1}(V_0)]$.

The set $\operatorname{Cl}[S^n - \Phi_{2j-1}(V_0)]$ is the union of a topological (n-1)-sphere Σ and one of the components of $S^n - \Sigma$. It is known (see [1]) that such sets are absolute retracts. Since $\operatorname{Cl}[S^n - \Phi_{2j-1}(V_0)]$ is an absolute retract, we can extend $g_{j-1}|(W_{\sigma} - H_{\sigma})$ to a mapping

$$\psi_{\sigma} \colon W_{\sigma} \to \operatorname{Cl}[S^n - \Phi_{2j-1}(V_0)].$$

Since $V_r \subset St(V_0)$ for $r = 0, \dots, j$,

$$\phi_{2j}(V_r) \subset \operatorname{St}(\phi_{2j}(V_0)) \subset \phi_{2j-1}(V_0).$$

Thus $\Phi_{2j}(V_r) \subset \Phi_{2j-1}(V_0)$ and the range of ψ_{σ} is contained in $\operatorname{Cl}[S^n - \Phi_{2j}(V_r)]$ for $r = 0, \dots, j$. Thus $\psi_{\sigma}[V_r \cap W_{\sigma}] \subset \operatorname{Cl}[S^n - \Phi_{2j}(V_r)]$ for $r = 0, \dots, j$.

If σ' is a different system of j+1 members of G and $W_{\sigma'} \cap W_{\sigma} \neq \emptyset$, then $\psi_{\sigma} | (W_{\sigma'} \cap W_{\sigma}) = \psi_{\sigma'} | (W_{\sigma'} \cap W_{\sigma}) = g_{j-1} | (W_{\sigma'} \cap W_{\sigma})$. It follows that we can piece the mappings ψ_{σ} and g_{j-1} together to obtain a mapping $g_j: K_j \rightarrow S^n$. It is obvious that $g_j [V \cap K_j] \subset \operatorname{Cl}[S^n - \Phi_{2j}(V)]$ for each $V \in G$.

We define $g = g_m$. Since $K_m = M$, g is a mapping of M into Sⁿ such

1965]

that $g[V] \subset Cl[S^n - \Phi_{2m}(V)]$ for each $V \in G$. If $x \in V \in G$, then $x \in \phi_{2m}(V)$ and, hence, $F(x) \subset interior \Phi_{2m}(V)$. It follows that if $x \in M$, then $g(x) \in S^n - F(x)$.

3. Homotopy for a class of set-valued functions. Let M be a finitedimensional compact metric space. We define $\Gamma(M, S^n)$ to be the set of all upper semi-continuous set-valued functions F on M such that for each $x \in M$, F(x) is a cellular subset of S^n . We let I = [0, 1].

Let F and G be members of $\Gamma(M, S^n)$. A function H is a cellular homotopy relating F to G if:

(i) $H \in \Gamma(M \times I, S^n)$, and

(ii) for all $x \in M$, H(x, 0) = F(x) and H(x, 1) = G(x).

If there exists a cellular homotopy relating F to G, then we say that F is *homotopic* to G and write $F \sim G$. The relation \sim is an equivalence relation and partitions $\Gamma(M, S^n)$ into equivalence classes which we call cellular homotopy classes.

Let $F \in \Gamma(M, S^n)$ and let $f: M \to S^n$ be a (single-valued) continuous function. A function H is a special homotopy relating F to f if:

(i) H is a cellular homotopy relating F to f, and

(ii) for all $x \in M$ and $0 \le t < 1$, H(x, t) is homeomorphic to F(x).

If F is a single-valued function as well as f, then (ii) implies that H is single-valued, and since upper semi-continuity is equivalent to continuity for single-valued functions, in this case H is an ordinary homotopy.

LEMMA 3. If $F \in \Gamma(M, S^n)$, then there exists a single-valued continuous function $f: M \to S^n$ and a special homotopy H relating F to f.

PROOF. For each $p \in S^n$, we define a mapping $J_p: [S^n - p] \times I \rightarrow S^n$ by

$$J_{p}(x, t) = \left[-tp + (1-t)x\right]/\left\|-tp + (1-t)x\right\|$$

for $x \in S^n - p$, $0 \leq t \leq 1$. J_p is a pseudo-isotopy, since the map ϕ_t defined by $\phi_t(x) = J_p(x, t)$ is a homeomorphism on $S^n - p$ if $0 \leq t < 1$, ϕ_0 is the identity mapping on $S^n - p$, and ϕ_1 is the constant map which takes $S^n - p$ into -p.

By Theorem 1, there is a mapping $g: M \to S^n$ such that $g(x) \in S^n - F(x)$ for each $x \in M$. We define f(x) = -g(x) and

$$H(x, t) = \{J_{g(x)}(y, t) \mid y \in F(x)\}$$

for $x \in M$ and $0 \le t \le 1$. Obviously, f is a continuous function on M into Sⁿ, and it is easy to verify that H is a special homotopy relating F to f.

THEOREM 2. Each cellular homotopy class of $\Gamma(M, S^n)$ contains a single-valued continuous function $f: M \to S^n$.

PROOF. This result follows immediately from Lemma 3 and the fact that special homotopies are cellular homotopies.

Our final theorem shows that the notion of cellular homotopy which we have defined for $\Gamma(M, S^n)$ is a true extension of the usual notion of homotopy for single-valued functions.

THEOREM 3. If f_0 and f_1 are single-valued continuous functions on Minto S^n and $H \in \Gamma(M \times I, S^n)$ is a cellular homotopy relating f_0 to f_1 , then there exists a single-valued homotopy $h: M \times I \rightarrow S^n$ which relates f_0 to f_1 in the usual sense.

PROOF. We apply Lemma 3 (replacing M by $M \times I$ and F by H) to obtain a single-valued continuous function $\phi: M \times I \rightarrow S^n$ and a special homotopy $K \in \Gamma((M \times I) \times I, S^n)$ relating H to ϕ . Now, for $(x, t) \in M \times I$, we define

$$h(x, t) = \begin{cases} K(x, 0, 3t) & \text{if } 0 \leq t \leq 1/3, \\ K(x, 3t - 1, 1) & \text{if } 1/3 \leq t \leq 2/3, \\ K(x, 1, 3 - 3t) & \text{if } 2/3 \leq t \leq 1. \end{cases}$$

If $0 \le t < 1/3$, then h(x, t) = K(x, 0, 3t) is homeomorphic to $K(x, 0, 0) = H(x, 0) = f_0(x)$ and, hence, is a one-point set. Likewise, if $2/3 < t \le 1$, then h(x, t) is a one-point set. If $1/3 \le t \le 2/3$, then h(x, t) = K(x, 3t-1, 1) = (x, 3t-1) and since ϕ is single-valued, h(x, t) is a one-point set. Thus h is a single-valued function on $M \times I$ into S^n . Since K is upper semi-continuous, h is also upper semi-continuous. Since h is single-valued, this implies that h is continuous.

We have shown that $h: M \times I \rightarrow S^n$ is an ordinary single-valued homotopy. Since $h(x, 0) = K(x, 0, 0) = H(x, 0) = f_0(x)$ and $h(x, 1) = K(x, 1, 0) = H(x, 1) = f_1(x)$, h relates f_0 to f_1 in the usual sense.

It should be remarked that it can be shown that the smallest equivalence relation containing both homotopies of single-valued functions and special homotopies is the relation generated by cellular homotopies. The proof is similar to that of Theorem 4.

BIBLIOGRAPHY

1. R. H. Bing, Retractions onto spheres, Amer. Math. Monthly 71 (1964), 481-484.

2. A. Granas and J. W. Jaworowski, Some theorems on multi-valued mappings of subsets of the Euclidean space, Bull. Acad. Polon. Sci. Sér. 7 (1959), 277-283.

3. J. W. Jaworowski, Some consequences of the Vietoris mapping theorem, Fund. Math. 45 (1958), 261–272.

UNIVERSITY OF GEORGIA