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1. Introduction. A. Granas asked the following question. If F is

an upper semi-continuous set-valued function on a compact metric

space M such that the image of each point of M is a proper subcon-

tinuum of S", then is F "homotopic" to a single-valued continuous

function? It was pointed out that care must be used in the definition

of homotopy of set-valued functions, since the first natural candidate

puts all upper semi-continuous set-valued functions into one class. In

[3 ] and [2 ] studies were made of homotopies of set-valued functions

subject to the restriction that H(x, t) be acyclic (with respect to

homology over Z2) for each (x, t)EMXl.

In this paper the homotopy problem is solved for those upper semi-

continuous functions F for which each F(x) is a cellular subset of

Sn. In particular, the class of cellular upper semi-continuous set-valued

functions is partitioned into equivalence classes by the relation of

cellular homotopy, each class contains single-valued continuous func-

tions, and two single-valued continuous functions are in the same

class if and only if they are homotopic in the usual sense.

A selection theorem which seems to be different from those dis-

cussed in the literature is proved in §2. It is shown that if F is upper

semi-continuous on M and F(x) is a cellular subset of Sn for each

xEM, then there exists a continuous function g: M—>Sn such that

g(x)ESn — F(x) for each xEM. In addition to being the main tool

used in the construction of the homotopies, this selection theorem is

of interest in itself.

2. The selection theorem. A subset A of Sn is cellular if and only

if there exists a sequence EiZ)E2Z)Ea^) • • • of topological «-cells

such that A = HtLi Ek and, for each k, A Cinterior Ek.

Let M he an m-dimensional compact metric space and let F be a

set-valued function on 214" such that:

(i) for each xEM, F(x) is a cellular subset of Sn, and

(ii)  F is upper semi-continuous.

A covering pair for F and M is an ordered pair (G, D) such that :
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(i) G is a finite open covering of M,

(ii) D is a function with domain G such that for each UQG, D(U)

is a topological «-cell which is contained in Sn, and

(iii) for each xQM, if x£ UQG then F(x) Cinterior D(U).

Lemma 1. There exists a covering pair.

Proof. For each xQM, there exists a topological ra-cell A(x) such

that P(x) Cinterior A(x) and A(x)QSn. For each xQM, there exists

a neighborhood V(x) such that if tQV(x) then F(t) Qinterior A(x).

{ V(x)\xQM] is an open covering of M, and, since M is compact,

this covering has a finite subcovering G = { F(xi), • • • , V(xk)}. We

define D(V(x,)) =A(x¡) for j=l, ■ ■ ■ , k. It is easy to verify that

(G, D) is a covering pair.

Lemma 2. If (G, D) is a covering pair, then there exists a covering pair

(G*, D*) such that:

(i) G* is a star refinement of G, and

(ii) if UQG, U*QG* and U*QU, then D*(U*) QD(U).

Proof. Let X be the Lebesgue number of the covering G. For each

xQM, there is a topological w-cell A(x) such that .F(x) Cinterior A(x)

and such that if xQUQG then A(x)QD(U). For each xQM, there

is a neighborhood W(x) of x such that:

(i)  W(x) is contained in the X/3-neighborhood of x, and

(ii) if tQW(x) then F(t) Qinterior A(x). The set {JF(x)|x£Af} is

an open covering of M and has a finite subcover G*= { W(xi), • • • ,

W(xk)\. We define D*(W(x¡))=A(x,) for j = l, • • • , k. It is easy to

verify that (C7*, D*) has the desired properties.

Let P be an upper semi-continuous set-valued function on a com-

pact finite-dimensional metric space M such that, for each xQM,

F(x) is a cellular subset of S".

Theorem 1. There exists a single-valued continuous function

g: M—>Sn such that g(x)QSn —F(x) for each xQM.

Proof. Let m be the dimension of M. It follows from Lemmas 1

and 2 that there are covering pairs (Go, -Do). • • • , (G2m, D2m) such

that for each j, í¿j¿2m: (i) G¡ is a star refinement of G;_i, and

(ii) if UjQGj, Uj-iQGj-i and UjQUj-u then D^Uf) QD^i(U^i).
We choose a finite open covering G of M such that G is of order m,

G is a star refinement of dm, and no proper subset of G covers M.

For each integer/, 0¿j¿m, we define Kj— {x|x£ikfand x is a mem-

ber of at most/+l members of G\. Each K¡ is a closed subset of M,

and Km = M.
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For each VEG and each integer/, 0^j^2m, we select sets <pj(V)

EGj such that St( V) C<K>( V) and St(&( V)) C<Pi-i( V), for 1 áj^ 2».
We define *XF) = Dj(<pj(V)) for each FGG and j' = 0, •■• , 2m.

We are going to define (inductively) for each /, 0 ^ j ¿m,a mapping

g¡: Kj-^Sn such that, for each VEG,

gj[Vr\Kj]CC\[S»-<S>2j(V)].

For each VEG, we choose a point pvESn — $>o(F) and define go(x)

= £y for each xG FP\2£0. Since FHX0 is closed in K0 for each VEG,

go is continuous.

Now suppose 0 < / ^ m and gy_i has been defined. Let

<r= { Fo, • • • , F,-} be a set of j + i distinct members of G such that

V0r\ ■ ■ ■ r\Vj9±0. We define 27„=(F0n ■ ■ • C\VÙC\KS and W.

= Kj — U{ F| FGG-o"). Then IF»- is closed in K¡ and 22, is open

relative to W,. The mapping gs_i is defined on IF, — H, and IF, —22,

is closed relative to W„. It is easy to see that

gj_i[W. - Hc] C Ú Cl[5- - *W-i(Fr)]

= Cl
i

S" - n *2i_2(Fr)
r-0

Since ^y-i(F)CSt(^i_1(Fr))C«/»2y-2(Fr) for r = 0, • • • , j, i>2y_i(F0)

Citf-o $w-i( Vr). Therefore, g,_i[W,-2i,] CCl[5«-$2;_i(F„)].
The set Cl[Sn — $2j-i(V0)] is the union of a topological (n — 1)-

sphere S and one of the components of Sn— 2. It is known (see [l])

that such sets are absolute retracts. Since Cl[5" — &2j-i(V0)] is an

absolute retract, we can extend gy_i| (Wc — Hc) to a mapping

4,.:W.— a[S»- $2y-i(Fo)].

Since FrCSt(F0) for r = 0, • • • ,j,

<t>v(Vr) C St(4>2i(Vo)) C *«-i(Fo).

Thus $2j(Fr)C*2/-i(Fo) and the range of xp„ is contained in

Cl[5"-i>2y(Fr)]forr = 0, • • • ,j. ThusiMF/W,] CCl[5»-d>2y(Fr)]
for r = 0, •••,/.

If a' is a different system of /+1 members of G and W<,'C\W,7¿cÍ,

then ^|(^'nTFff)=^|(IFi.nTF„)=g3_i|(TF<r-niF,). It follows

that we can piece the mappings \pc and g,_i together to obtain a map-

ping gj-.Kj-^S". It is obvious that gj[VC\Kj] CC1[5»-*V(F)] for

each FGG.

We define g = gm. Since 2fm = M, g is a mapping of 212" into Sn such
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that g[V]QCl[Sn-$im(V)] for each VQG. If xQVQG, then
xQ<pim( V) and, hence, P(x) Cinterior 4>2m( V). It follows that if xQM,

then g(x)QSn-F(x).

3. Homotopy for a class of set-valued functions. Let If be a finite-

dimensional compact metric space. We define T(M, Sn) to be the set

of all upper semi-continuous set-valued functions F on M such that

for each xQM, F(x) is a cellular subset of S". We let 7= [0, l].

Let P and G be members of T(M, Sn). A function Ii is a cellular

homotopy relating P to G if :

(i) Her (MX I, 5"), and
(ii) for all xQM, H(x, 0) = P(x) and H(x, 1) =G(x).

If there exists a cellular homotopy relating F to G, then we say that

P is homotopic to G and write F~G. The relation ~ is an equivalence

relation and partitions r(ili", Sn) into equivalence classes which we

call cellular homotopy classes.

Let FQr(M, Sn) and let/: M—>S" be a (single-valued) continuous

function. A function His a special homotopy relating F to/ if :

(i) i? is a cellular homotopy relating P to /, and

(ii) for all xQM and 0¿t<l, H(x, t) is homeomorphic to P(x).

If P is a single-valued function as well as/, then (ii) implies that

H is single-valued, and since upper semi-continuity is equivalent to

continuity for single-valued functions, in this case H is an ordinary

homotopy.

Lemma 3. If FQr(M, Sn), then there exists a single-valued continuous

function f: Af—>S" and a special homotopy H relating F to f.

Proof. For each pQS", we define a mapping Jp: [Sn—p]xl—>5n

by

Jp(x, t) = [-tp + (1 - t)x]/\ - tp + (1 - t)x\\

for xQSn—p, 0¿t¿l. Jp is a pseudo-isotopy, since the map <pt de-

fined by <pt(x) =Jp(x, t) is a homeomorphism on Sn—p if O^i <1, <po

is the identity mapping on Sn — p, and <pi is the constant map which

takes Sn—p into —p.

By Theorem 1, there is a mapping g: M—>Sn such that g(x)QSn

— F(x) for each xQM. We define f(x) = —g(x) and

B(x,t) = {j„w(y,t)\yQF(x)\

for xQM and Q¿t¿l. Obviously, / is a continuous function on M

into Sn, and it is easy to verify that if is a special homotopy relating

Ftof.
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Theorem 2. Each cellular homotopy class of r(M, Sn) contains a

single-valued continuous function f: M—*S".

Proof. This result follows immediately from Lemma 3 and the fact

that special homotopies are cellular homotopies.

Our final theorem shows that the notion of cellular homotopy which

we have defined for r(M, Sn) is a true extension of the usual notion of

homotopy for single-valued functions.

Theorem 3. If fo andfi are single-valued continuous functions on M

into Sn and HQ-r(MXl, Sn) is a cellular homotopy relating fo to fx,

then there exists a single-valued homotopy h: MXl—>Sn which relates f0

to fi in the usual sense.

Proof. We apply Lemma 3 (replacing M by MX I and F by H)

to obtain a single-valued continuous function <p: MXI^>Sn and a

special homotopy KQr((MXl)Xl, Sn) relating H to <j>. Now, for

(x, t)QMXl, we define

h(x, t) =

K(x, 0, 3t)    iíQ¿t¿ 1/3,

K(x, 3t - 1, 1)   if 1/3 ¿t¿ 2/3,

.K(x> 1, 3 - 3t)    if 2/3 ¿ t ¿ 1.

If 0¿t<í/3, then h(x, t)=K(x, 0, 3t) is homeomorphic to K(x, 0, 0)

= H(x, 0) =/o(x) and, hence, is a one-point set. Likewise, if 2/3 <t

¿1, then h(x, t) is a one-point set. If 1/3¿t¿2/3, then h(x, t)

= K(x, 3t—l, l) = (x, 3t — 1) and since <p is single-valued, h(x, t) is a

one-point set. Thus h is a single-valued function on MX I into Sn.

Since K is upper semi-continuous, h is also upper semi-continuous.

Since h is single-valued, this implies that h is continuous.

We have shown that h: MXI-^Sn is an ordinary single-valued

homotopy. Since h(x, 0)=K(x, 0, 0)=H(x, 0) =/o(x) and h(x, 1)

= K(x, 1, 0) =H(x, 1) =/i(x), h relates/o to/i in the usual sense.

It should be remarked that it can be shown that the smallest

equivalence relation containing both homotopies of single-valued

functions and special homotopies is the relation generated by cellular

homotopies. The proof is similar to that of Theorem 4.
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