
MACHINE DEPENDENCE OF DEGREES OF DIFFICULTY1

MICHAEL ARBIB AND MANUEL BLUM

One may define a degree-of-difficulty relation for total recursive

functions by saying that/2:g (/ is at least as difficult as g) if, to each

program for computing/, there corresponds a program for computing

g such that g(x) takes no more steps to compute than f(x) for almost

all x.2 Unfortunately, such an ordering is highly dependent on our

choice of a mathematical model for a computer (cf. Hartmanis and

Steams [l, §111]). It is the purpose of this note to so modify our

degree-of-difficulty relation as to lessen this machine dependence.

1. Monoid-induced machine equivalence. Let 5 be a monoid of 2-

variable functions, increasing for x and y positive. The associative

multiplication is

f*g(x,y) =/(*, g(x, y)),

and 5 contains the identity e(x, y) =y.

Let A and G be two partial recursive functions of a single variable.

We say that A 5-bounds G iff F(x) defined implies G(x) defined, and

there exists a function p(ES such that

p(x, F(x)) 2:G(x) for almost all x for which A(x) is defined.

A machine M may be thought of as supplied with a collection of

programs P¿ (t = l, 2, 3, • • •); <£, is then the function computed by

M when supplied with program A,-, and <3?¿(x) is the "number of

steps" it takes to compute </>¿(x).3 (For a given partial recursive func-

tion /, there will, in general, be infinitely many i such that <£,=/;

cf. a universal Turing machine.) For such a machine M, we then say

that

Received by the editors December 30, 1963.

1 This work was supported in part by the U. S. Army Signal Corps, the Air Force

Office of Scientific Research, and the Office of Naval Research; in part by the National

Science Foundation (Grant G-16526), the National Institutes of Health (Grants

NB-01865-05 and MH-04737-03), and the National Aeronautics and Space Adminis-

tration (Grant NsG-496); and in part by the U. S. Air Force (ASD Contract AF

33(616)-7783).
2 Rabin [2] defines a strict partial ordering f>-g (J more difficult than g) as the

existence of a program for computing g such that with any program for / the com-

putation of/(*) takes more 'steps' than the computation of g{x) for almost all x.

3 By way of contrast, Ritchie [3] bases his degree of difficulty on the amount of

tape, rather than the time, used by a machine (in his case, a Turing machine) during

a computation.

442

MACHINE DEPENDENCE OF DEGREES OF DIFFICULTY 443

Definition 1. /è m g (f is at least as difficult as g, using M) if and

only if, to each program F< for computing /, there corresponds a

program P¡ for computing g such that €>,- 5-bounds <3?j.

In §3, we shall particularize our choice of 5. We observe that

Hartmanis and Steams [l] essentially employ the choice

5 = \f\f(x, y) = ky, k a positive constant}.

(Though they treat sequences, whereas we treat functions on the

integers, much of their material is, of course, applicable.)

We chose 5 to be a monoid with a monotony condition simply

so that we might deduce:

Theorem 1. z^m is reflexive and transitive.

In describing the machine dependence of the ordering è5at, we

want to know, for each machine M, which are those machines N that

give rise to the same ordering:

Definition 2. Two machines M and N are .^-equivalent, Afs3 7Y

iff, for all partial recursive functions / and g,

f^Mg^f^Ng.

This equivalence relation is obtained from a partial ordering it s on

machines. We say that M is at least as complex as N (modulo S), and

write Ng^sM, iff each program NP, for machine N can be replaced

by a corresponding program MP¡ for machine M so that N$i S-

bounds M$j (NPi and MP¡ are programs for the same function). In

other words, M is at least as complex as N if, up to elements of S,

M can compute any function as quickly as N can. It is now immedi-

ate that:

Theorem 2. (i) ^s is reflexive and transitive.

(ii) il7ss TV if and only if M^s N and N^s M.

§111 of Hartmanis and Steams [l] may now be reread as a treat-

ment of equivalence classes under the monoid {p\ p(x, y) = kyin}.

2. Turing machines as programmed computers. To fit Turing ma-

chines into our present discussion we have to separate the machine

from the program. We do this by adopting the following, somewhat

nonstandard, model of a Turing machine:

It is a device equipped with a container for cards, a tape scanner-

printer-mover, and a tape that is infinite in both directions. The tape

is divided into squares along its length and the scanner can look at

one square at a time. The device can print the blank, or one of a finite

set 2 of symbols, on the square it is examining and shift the tape one

444 MICHAEL ARSIS AND MANUEL BLUM [June

square to right or left. The container can hold an arbitrarily large but

finite number of cards, together called the program. On each card is

printed a single 5-tuple qiSjSkmqi. The q{ denote internal states of

the device, the Sj are tape symbols, and m is a move A (left), R

(right) or TY (none). When the device is in state g,- and scans the

symbol Sj, it prints the symbol Sk, moves the tape m, and changes its

internal state to q%. If there is no card starting with qiSj in the con-

tainer when the machine is in state g, and scanning the symbol Sj,

then the machine stops. Any program is allowed, subject to the con-

dition that any 2 cards must differ in the initial pair c/,-5,-.

We can associate with each program a partial recursive function <j>

as follows:

The program is placed in the container, an input integer x is writ-

ten in some suitably encoded form as a finite string of symbols on the

tape, the scanner is placed over the rightmost digit of this string, and

the device is put in states g0. The device then operates in accordance

with the instructions printed in the program. If it never stops, we

say <f>(x) diverges. If it does stop, we let </>(x) be the integer which is

obtained from the string of symbols on the tape by some standard

decoding.

In the following discussion we let *Abe the above machine with the

constraint that 2 = {0, 1, • • • , k — 1} (with each of these k numbers

considered as a single symbol) and that the coding of input and out-

put is to be in radix k (k ^ 1). In particular, we shall be interested in

machines equivalent to 10A.

Now let "A differ from 10A only in that 2 is augmented by some

fixed finitude of further symbols ("A still uses a radix 10 input-output

code).

Proposition 1. (i) If F is a program which causes 10T to compute

the function /, then P will also cause "T to compute f, and in exactly the

same number of steps.

(ii) If »Pi is a program which causes "T to compute f(x) in "<P»(x)

steps, then there exists a program 10Py which causes 10A to compute f(x)

in 10$j(x) steps, where

p(x, "Hx)) = 10$y(x)

on setting p(x, y) -Jtf+l) [k(k+l) + (k+y)(k+y+l)] + (3l-l)y
with k= [logio x + i]=number of digits of input to "T, Renumber of

symbols of alphabet of "A, and I— [logio AT + l].

Proof, (i) is obvious.

(ii) follows on letting 10Pj be the following simulation of "Pi on
10A:

1965] MACHINE DEPENDENCE OF DEGREES OF DIFFICULTY 445

a. The input string x to "T is replaced by an input string for 10F,

each digit, d, being replaced by an /-tuple, dO • • • 0. This can be done

in at most

k(l + l)k(k + 1) steps,

b. After i0Pj has encoded x, it acts on each /-tuple of digits just

as "Pi acts on each of ''F's symbols. The number of steps required for

this portion of the simulation is at most

(3/ - 1) • <■*,(*).

c. When "F, stops, its output is an integer y. Since iaPj simulates

"Pi, its tape at this point must contain an encoded y. 10Fy then de-

codes this to obtain y, an operation taking not more than

|(Z + l)k'(k' + 1) steps,

where k' is the number of digits in y. Since "F¿ may, in an extreme

case, merely print "<&¡{x) digits to the left of x, the best bound we

can give for k' is fe+«i>,(x).

Our estimate

P(x, y) = §(/ + l)[k(k + 1) + (k + y)(k + y + 1)] + (3/ - l)y

is thus verified. Q.E.D.

3. An equivalence class for 10F. Since the purpose of this paper is

to define computational difficulty to be invariant over a large subclass

of machines, a measure of our success must be the size of the machine

class containing 10F. But this class must depend on our choice of S.

If we choose S very small, say the set consisting of the single function

e(x, y) =y, then "T fé10T. On the other hand, if 5 is too large, e.g.,

the totality of total recursive functions f(x, y) satisfying the mo-

notony condition, then all machines are 5-equivalent to 10Fand, there-

fore, all total recursive functions are equidifficult. Motivated by

Proposition 1, we choose an S large enough to have

(*) l0F ms "T,

but small enough to make the 5-equivalence class of 10T interesting.

In fact, we let

5 = {ç(log x, y) I q(z, y) is a polynomial, monotone increasing for

positive z and y}.

Quite obviously, the proof of Proposition 1 can be generalized to show

Proposition la. kT is S-equivalent to a machine with a base k oode,

capable of printing I symbols, l>k>l.

446 MICHAEL ARBIB AND MANUEL BLUM [June

We next state and prove:

Proposition 2. 10T=skTfor k>l.

Proof. We shall prove this proposition for the special case k = 2 ; a

generalization of the proof to any integer k greater than 1 is quite

easy. To simplify the proof, we make use of a machine (similar to

"A) which we call 'A: It has a single tape, is capable of printing the

10 symbols 0 through 9, and operates with a radix 2 code. The proof

involves showing that 2A^¿ l0A and that l0T^gvT. From Proposi-

tion la we know that "T=§ 2A, and hence we may conclude that
2T=-$ 10A.

sA^s 10A: We simulate the program 2P; with 10Pj which operates

as follows:

a. 10Pj takes the input integer x base 10 and converts it to x base 2.

This can be done in less than 2 ([log2 x] + l)2 steps.

b. iaPj operates on x base 2 in precisely the same way as does 2P;.

This takes 23\(x) steps.

c. 10Pj converts the result base 2 to base 10 in at most

2([log2 x] + 1 + 2*¿(x))2 steps.

So 2$, À-bounds 10<ï>y with

q(z, y) = 2(* + l)2 + y + 2(z + 1 + y)\

By essentially the same proof we have that 10A^â 'A. Q.E.D.

We shall finally state a very general theorem without proof: The

proof, though tedious, does not involve any methods other than those

contained in the proofs of Propositions 1 and 2.

Theorem 3. 10 A is S-equivalent to any machine with a radix k input

and radix I output (k>\, /> 1), with a finite number of tapes, each of

finite dimension, and with a finite number of scanners on each tape.

In the following example, two degrees of difficulty are compared in

the radix 2 machine 2A. By Theorem 3, these comparisons remain

valid on a wide variety of machines.

Example. 2x>2tx.

Computation of 2X involves printing x zeroes after a 1. Computation

of the identity function x takes only 1 step. Clearly, x exceeds any

given polynomial in log x for almost all x.

We also see why Proposition 2 demands that the radix k be greater

than 1. Certainly T^s 10A, but it is not true that XA is 5-equivalent

to 10 A. We may see this by considering 2X. Actually, 2X requires about

2* steps just for writing time on lT, but only needs about x steps on

i96j] MACHINE DEPENDENCE OF DEGREES OF DIFFICULTY 447

10T, and x cannot 5-bound 2X. Nevertheless, a proof like that for

Theorem 3 shows that 1T is 5-equivalent to any machine with a radix

1 input-output code, with a finite number of tapes each of finite di-

memsion, and with a finite number of scanners on each tape.

References

1. J. Hartmanis and R. E. Steams, On the computational complexity of algorithms,

Trans. Amer. Math. Soc. 117 (1965), 285-306.
2. M. O. Rabin, Degree of difficulty of computing a function, and a partial ordering

of recursive sets, Hebrew University, Jerusalem, 1960.

3. R. W. Ritchie, Classes of predictably computable functions, Trans. Amer. Math.

Soc. 106 (1963), 139-173.

Research Laboratory of Electronics,

Massachusetts Institute of Technology

