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Presented here are theorems concerning upper semicontinuous de-

compositions of developable spaces, topological in the sense that the

common parts of intersecting domains (open sets) are open. Theorem

1 shows that, if the elements of such a decomposition do not have

nonbicompact [l] intersections with the closures of their comple-

ments, the decomposition space is developable. Theorem 2 shows that

if additionally the space covered by the decomposition is complete in

a certain Cauchy sense defined below the decomposition space is

complete in this sense. Theorem 3 is a variation of Theorem 2 dealing

with a nonequivalent [lO] Ascoli type completeness property. Under

Consequences some implications of Theorems 1 and 2 are given.

One of these gives affirmative resolutions of the following questions

raised by R. L. Moore: (1) Do upper semicontinuous decompositions

into compact point sets of spaces satisfying Axiom 0 and Axiom I3 (the

first three conditions of Axiom 1) of "Foundations of point set theory" [ó]

yield spaces satisfying these axioms? (2) Do such decompositions of

spaces satisfying Axiom 1 yield spaces satisfying this axiom? Two other

consequences are theorems of Morita-Hanai-Stone [7], [12] and I. A.

Vaïnsteïn [13].

The sequence Gi, G2, G3, • • • is said to be a development of the

space 2 provided that (1) for each «, Gn is a collection of domains

covering 2 and (2) if P is a point and D is a domain containing P,

then for some « every element of G„ containing P is a subset of D.

A space is said to be developable provided it has a development [2].

The developable space 2 is said to be complete in sense C or sense A

accordingly as it has a decreasingly monotonie development Gi, G2,

Gz, ■ • • satisfying the first or second of the following conditions:

Condition C. If J is an infinite point set and for each « some g„ of G„

contains all except finitely many points of /, then there exists a point

P such that every domain containing P contains infinitely many
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points of J. Condition A. If / and the gB's are as above and each gB+i

is a subset of g„, there exists a point P as above.

The decomposition G of the topological space 2 is called upper

semicontinuous in Stone's article cited above provided that for each

g in G every domain containing g has a subdomain D containing g such

that D contains every element of G that it intersects. Stone calls at-

tention to a variation in meaning for this terminology in the litera-

ture. The above definition does not require that the decomposition's

elements be closed but, if they are, reduces to the definition in [ó]

for the spaces under consideration here.

Throughout the remainder of this treatment, 2 denotes a develop-

able topological space; G denotes an upper semicontinuous decom-

position of 2, in the above sense, no element of which has a nonbi-

compact intersection with the closure of its complement; and I de-

notes the space in which points are the elements of G and regions are

the subcollections of G the sums of the elements of which are domains

in 2. Moore's Axiom 0, which states that every region is a point set,

is assumed to hold true in 2 with domain, closure, etc., being defined

naturally in terms of the notion of region. Following Moore's usage,

the notation K* denotes the sum of the sets of the collection K. As in

[6], no empty set is used. Suitable adjustments in cited definitions

may be made where needed on this account.

Theorem 1. I is developable.

Proof. 2 has a decreasingly monotonie development. Let Gi, G2,

Gz, • • ■ denote one satisfying Condition C if 2 is complete in sense C

and satisfying Condition A if S is complete in sense A. It may be

shown that there exist meanings for the notations Mk,h and Uk,\ for

positive integers A and regions hin I such that with respect to a se-

quence Hi, H2, Hz, • • • of well-ordered collections of regions covering

2" these conditions hold true: (1) For each A and region h of Hk, Mk,n is

a point of h but of no preceding region and Uk,h is a collection of ele-

ments of Gk intersecting Mk,n. Moreover, if Mk,n is not a domain in 2

then Uk,h is finite and covers both h* — Mk¡n and ß, the set of all points

belonging to Mk.h and the boundary of Mk,h- But if Mk¡n is a domain

it is A*. (2) If A, A, and ß are as above, each member u of Uk,« contains

an element P of ß such that if « < A and A' is the first region of Hn con-

taining Mk,h then « is a subset of every member of U„, v that contains

P. (3) If « < A and g belongs to G then the first region of Hk containing

g is a subset of the first region of Hn doing so.

If A belongs to the region R in 2" and is a domain in 2 there exist an

teger s and element P of A such that every member of G, containing
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P is a subset of A. If i=zs and the region h oí Hi contains A then A is

Mi,h, for if it is not then some element of [/,-,* contains P and is there-

fore a subset of A intersecting M<lB. Hence h* is A and A is a subset of

P. If A is not a domain, then for each « there exists a first region A„

of Hn containing A. Let P„ denote Un,hn and let C„ denote Mn,hn- By

condition (1) above, the collections T„ are finite and cover ß, the in-

tersection of A and the closure of the complement of A. Thus for some

w there exists a subcollection V oí Tx+ ■ • • +Tn covering the bi-

compact point set ß such that V* is a subset of R*. Let F denote a

point of ß and let R' denote a region in I containing A such that R'*

is a subset of V*+A. There exists some k>n such that every element

of G* containing F is a subset of R'*. Some element of Tk contains F

and by condition (1) all of the elements of Tk intersect Ck. Hence Ck

intersects R'* and is therefore a subset of V*+A. With the use of

condition (3) it may be seen that hi, hi, h¡, ■ • ■ is decreasingly mono-

tonic, hence that each Ci+i lies in hi. But no predecessor of A,- contains

A and thus condition (3) shows that h¡ is the first region of Hi con-

taining d+i. By condition (2), each member / of Tk contains an ele-

ment P of Ck belonging to the boundary of Ck in 2 such that if i ¿n,

then t is a subset of every member of Ti that contains P. Clearly, this

implies that T* is a subset of V*. By condition (1), h* is a subset of

T* + Ck. From these facts it follows that hk is a subset of P. For some

s>k the members of G, containing F are subsets of h*. If i^s and

the region h of if, contains A then some element u of Ï7,-,» contains F

and is therefore a subset of A£. Since Mi¡h intersects u it belongs to

hk. So A* does not precede the first region h! of Hk containing Mi,%.

By condition (3) the region A is a subset of A', which therefore con-

tains A and does not precede hk. Thus h! is hk and A is a subset of P.

It follows that Hi, Hi, H%, • ■ • is a development of I.

Theorem 2. Ifliis complete in sense C, so is I.

Proof. With Gi, G2, G3, • • • and Hi, Hi, H3, • • • as above it follows

that if for each w, Wn denotes H„+Hn+i+Hn+i+ ■ • • then Wu W2,

Ws, • • • is a decreasingly monotonie development of I. If G' is an

infinite subcollection of G and for each «, some element wn of W„

contains all except finitely many elements of G', then for each « there

exists a first region A„ of Hn such that some w,- is a subset of A„. Let /

denote an infinite subset of G'* such that no member of G' contains

two elements of J. In view of condition (1) of the above proof it is

clear that for each » the collection Un.h„ is finite, and hence there is a

collection Pn of all of its elements having an infinite intersection with

J. Moreover, it follows inductively that for each « there is a collection



488 J. M. WORRELL, JR. [June

Fn of all «-term sequences/such that (1) if i^n, the ith term of/be-

longs to Ti, (2) some infinite subset of J intersects each term of/, and

(3) if for each i> 1 every element of F¿ is a subset of some element of

Ti-x then / is decreasingly monotonie. For each « > 1 and sequence /

in Fn there exists a sequence/' in Fn-i such that if if¿n — l, the ith

term of/' is the ith term of/. Since each collection Fn is finite, there

exists a sequence f\, f2, fz, ■ ■ • such that, for each «, /„ belongs to Fn,

and if «>1 and ig« —1, the ith term of /„_i is the ith term of /„.

There exists a nonrepeating sequence Pi, P2, P3, • • • such that for

each «, P„ belongs to / and every term of /„. It follows inductively

that if for each «, Rn denotes the «th term of/„, then each PB contains

all except finitely many terms of Pi, P2, P3, • • • . Each PB belongs to

Gn and thus in view of the conditions on Gi, G2, Gz, • ■ • it may be seen

that some element M of G contains a point X such that every domain

in 2 to which X belongs contains infinitely many of the points P„.

If the domain R in I contains M then it has an infinite intersection

with G', for no set in this collection contains two of the points P„ and

R* is a domain in 2.

Theorem 3. 7/ 2 is complete in sense A, so is I.

Proof. Retaining the above notation and requiring that Wi, w2,

Wz, • ■ • he decreasingly monotonie we see that if n > 1 there exists

some i>n such that w,- is a subset of AB and hn-i. For some k^i, wt

is an element h of Hk. By condition (3) in the proof of Theorem 1, A is

a subset of the first region A' of Hn containing Mk,h. No term of Wi,

w2, wz, ••• is a subset of a predecessor of AB and the point Mk.h lies in

AB. So A' is An. Similarly, A„_i is the first element of 27B_i containing

Mk.h- Hence, by condition (3), A„ is a subset of hn-x and this, for

analogous reasons, implies that A„_i is the first element of 2ïB_i con-

taining Mn,hn. Therefore, by condition (2), each element of Tn is a

subset of some element of FB_i. So by definition of the collections FH

each PB+i is a subset of Rn. Thus G contains an element M as in the

above proof.

Consequences. Terminology appearing below that is not explicitly

cited or defined here is much as in [4],

A space satisfies Axiom 13 of [ô] if and only if it is a regular Fi

space 2 as in the hypothesis of Theorem 1. A space satisfies Axiom 1

if and only if it is a regular Ti space 2 as in the hypothesis of Theorem

2. In these spaces, a closed point set is compact [l ] if and only if it is

bicompact [6, Chapter l]. So if 2 satisfies Axiom 13, I is regular and

Ti. Moreover, it may be seen that if ß is the boundary of an element
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of an upper semicontinuous decomposition of a regular Pi space and

the decomposition space satisfies the first axiom of countability, then

ß is bicompact if and only if every collection of domains covering ß

is refined by a point countable collection of domains covering ß. Thus

the following theorem is a corollary to Theorems 1 and 2.

Corollary 1. If (1) U is an upper semicontinuous decomposition

of a space satisfying Axioms 0 and 13 (Axioms 0 and 1) and (2) any

collection of domains covering the boundary ß of an element of U not a

domain is refined by a point countable collection of domains covering ß,

these conditions are equivalent:

(1) The decomposition space satisfies Axiom 13 (Axiom 1).

(2) The decomposition space satisfies the first axiom of countability.

(3) No element of U has a noncompact boundary.

The hypothesis of Corollary 1 involving point countable refine-

ments is nonsuperfluous : There exists an upper semicontinuous de-

composition of a certain space satisfying Axioms 0 and 1 such that,

while the decomposition space is metrizable and compact, the de-

composition contains an element with a noncompact boundary [6,

(implicitly) p. 66].
Normalcy is preserved by every upper semicontinuous decomposi-

tion of a normal space. Moreover, if ß is the boundary of an element

of an upper semicontinuous decomposition of a normal Pi space 5

and the decomposition space satisfies the first axiom of countability,

then ß is compact [7]. If, additionally, 5 satisfies Axiom 13, ß is bi-

compact. So the following theorem is a corollary to Theorems 1 and 2.

Corollary 2. i/ U is an upper semicontinuous decomposition of a

normal space satisfying Axioms 0 and 13 (Axioms 0 and 1), these condi-

tions are equivalent:

(1) The decomposition space is a normal space satisfying Axioms 13

(Axiom 1).

(2) The decomposition space satisfies the first axiom of countability.

(3) No element of U has a noncompact boundary.

Collectionwise normalcy [2 ] is preserved by upper semicontinuous

decompositions of collectionwise normal spaces. Every collectionwise

normal space satisfying Axioms 0 and 13 is metrizable [2]. Every

metrizable space complete in sense C is metrically topologically com-

plete [9]. The next theorem follows from these theorems and Corol-

lary 2.

Corollary 3 (Morita-Hanai [7, Theorem 1] and A. H. Stone

[12, Theorem lj; I. A. Vaînstëin [l3, Theorem 6]). If U is an
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upper semicontinuous decomposition of a space that is metrizable

(metrically topologically completé), these conditions are equivalent:

(1) The decomposition space is metrizable (metrically topologically

complete).

(2) The decomposition space satisfies the first axiom of countability.

(3) No element of U has a noncompact boundary.

The theorem of Morita-Hanai-Stone may also be derived from

Corollary 1, the paracompactness of the closed continuous images of

paracompact Hausdorff spaces [5], and the Nagata-Smirnov theorem

[8], [11].
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