UPPER SEMICONTINUOUS DECOMPOSITIONS OF DEVELOPABLE SPACES¹

JOHN M. WORRELL, JR.

Presented here are theorems concerning upper semicontinuous decompositions of developable spaces, topological in the sense that the common parts of intersecting domains (open sets) are open. Theorem 1 shows that, if the elements of such a decomposition do not have nonbicompact [1] intersections with the closures of their complements, the decomposition space is developable. Theorem 2 shows that if additionally the space covered by the decomposition is complete in a certain Cauchy sense defined below the decomposition space is complete in this sense. Theorem 3 is a variation of Theorem 2 dealing with a nonequivalent [10] Ascoli type completeness property. Under Consequences some implications of Theorems 1 and 2 are given. One of these gives affirmative resolutions of the following questions raised by R. L. Moore: (1) Do upper semicontinuous decompositions into compact point sets of spaces satisfying Axiom 0 and $Axiom 1_3$ (the first three conditions of A xiom 1) of "Foundations of point set theory" [6] yield spaces satisfying these axioms? (2) Do such decompositions of spaces satisfying Axiom 1 yield spaces satisfying this axiom? Two other consequences are theorems of Morita-Hanai-Stone [7], [12] and I. A. Vaĭnšteĭn [13].

The sequence G_1, G_2, G_3, \cdots is said to be a *development* of the space Σ provided that (1) for each n, G_n is a collection of domains covering Σ and (2) if P is a point and D is a domain containing P, then for some n every element of G_n containing P is a subset of D. A space is said to be *developable* provided it has a development [2]. The developable space Σ is said to be complete in sense C or sense A accordingly as it has a decreasingly monotonic development G_1, G_2, G_3, \cdots satisfying the first or second of the following conditions: Condition C. If J is an infinite point set and for each n some g_n of G_n contains all except finitely many points of J, then there exists a point P such that every domain containing P contains infinitely many

Presented to the Society, April 19, 1962 under the title Concerning upper semicontinuous collections of mutually exclusive closed and compact point sets; received by the editors August 19, 1963.

¹ Principal work on this paper was supported by a National Science Foundation Postdoctoral Fellowship at the University of Texas, 1961–62. Revision and extension were supported in part by the United States Atomic Energy Commission. Reproduction in whole or in part is permitted for any purpose of the U. S. Government.

The decomposition G of the topological space Σ is called *upper* semicontinuous in Stone's article cited above provided that for each g in G every domain containing g has a subdomain D containing g such that D contains every element of G that it intersects. Stone calls attention to a variation in meaning for this terminology in the literature. The above definition does not require that the decomposition's elements be closed but, if they are, reduces to the definition in [6] for the spaces under consideration here.

Throughout the remainder of this treatment, Σ denotes a developable topological space; G denotes an upper semicontinuous decomposition of Σ , in the above sense, no element of which has a nonbicompact intersection with the closure of its complement; and I denotes the space in which points are the elements of G and regions are the subcollections of G the sums of the elements of which are domains in Σ . Moore's Axiom 0, which states that every region is a point set, is assumed to hold true in Σ with *domain*, *closure*, etc., being defined naturally in terms of the notion of region. Following Moore's usage, the notation K^* denotes the sum of the sets of the collection K. As in [6], no empty set is used. Suitable adjustments in cited definitions may be made where needed on this account.

THEOREM 1. I is developable.

PROOF. Σ has a decreasingly monotonic development. Let G_1 , G_2 , G_3, \cdots denote one satisfying Condition C if Σ is complete in sense C and satisfying Condition A if Σ is complete in sense A. It may be shown that there exist meanings for the notations $M_{k,h}$ and $U_{k,h}$ for positive integers k and regions h in I such that with respect to a sequence H_1, H_2, H_3, \cdots of well-ordered collections of regions covering I these conditions hold true: (1) For each k and region h of H_k , $M_{k,h}$ is a point of h but of no preceding region and $U_{k,h}$ is a collection of elements of G_k intersecting $M_{k,h}$. Moreover, if $M_{k,h}$ is not a domain in Σ then $U_{k,h}$ is finite and covers both $h^* - M_{k,h}$ and β , the set of all points belonging to $M_{k,h}$ and the boundary of $M_{k,h}$. But if $M_{k,h}$ is a domain it is h^* . (2) If k, h, and β are as above, each member u of $U_{k,h}$ contains an element P of β such that if n < k and h' is the first region of H_n containing $M_{k,h}$ then u is a subset of every member of $U_{n,h'}$ that contains P. (3) If n < k and g belongs to G then the first region of H_k containing g is a subset of the first region of H_n doing so.

If A belongs to the region R in I and is a domain in Σ there exist an teger s and element P of A such that every member of G_s containing

P is a subset of A. If $i \ge s$ and the region h of H_i contains A then A is $M_{i,h}$ for if it is not then some element of $U_{i,h}$ contains P and is therefore a subset of A intersecting $M_{i,h}$. Hence h^* is A and h is a subset of R. If A is not a domain, then for each n there exists a first region h_n of H_n containing A. Let T_n denote U_{n,h_n} and let C_n denote M_{n,h_n} . By condition (1) above, the collections T_n are finite and cover β , the intersection of A and the closure of the complement of A. Thus for some *n* there exists a subcollection V of $T_1 + \cdots + T_n$ covering the bicompact point set β such that V^* is a subset of R^* . Let Y denote a point of β and let R' denote a region in I containing A such that R'* is a subset of $V^* + A$. There exists some k > n such that every element of G_k containing Y is a subset of R'^* . Some element of T_k contains Y and by condition (1) all of the elements of T_k intersect C_k . Hence C_k intersects R'^* and is therefore a subset of $V^* + A$. With the use of condition (3) it may be seen that h_1, h_2, h_3, \cdots is decreasingly monotonic, hence that each C_{i+1} lies in h_i . But no predecessor of h_i contains A and thus condition (3) shows that h_i is the first region of H_i containing C_{i+1} . By condition (2), each member t of T_k contains an element P of C_k belonging to the boundary of C_k in Σ such that if $i \leq n$, then t is a subset of every member of T_i that contains P. Clearly, this implies that T_{k}^{*} is a subset of V^{*}. By condition (1), h_{k}^{*} is a subset of $T_{k}^{*}+C_{k}$. From these facts it follows that h_{k} is a subset of R. For some s > k the members of G_s containing Y are subsets of h_k^* . If $i \ge s$ and the region h of H_i contains A then some element u of $U_{i,h}$ contains Y and is therefore a subset of h_{k}^{*} . Since $M_{i,h}$ intersects u it belongs to h_k . So h_k does not precede the first region h' of H_k containing $M_{i,h}$. By condition (3) the region h is a subset of h', which therefore contains A and does not precede h_k . Thus h' is h_k and h is a subset of R. It follows that H_1 , H_2 , H_3 , \cdots is a development of I.

THEOREM 2. If Σ is complete in sense C, so is I.

PROOF. With G_1, G_2, G_3, \cdots and H_1, H_2, H_3, \cdots as above it follows that if for each n, W_n denotes $H_n + H_{n+1} + H_{n+2} + \cdots$ then W_1, W_2 , W_3, \cdots is a decreasingly monotonic development of I. If G' is an infinite subcollection of G and for each n, some element w_n of W_n contains all except finitely many elements of G', then for each n there exists a first region h_n of H_n such that some w_i is a subset of h_n . Let Jdenote an infinite subset of G'^* such that no member of G' contains two elements of J. In view of condition (1) of the above proof it is clear that for each n the collection U_{n,h_n} is finite, and hence there is a collection T_n of all of its elements having an infinite intersection with J. Moreover, it follows inductively that for each n there is a collection J. M. WORRELL, JR.

 F_n of all *n*-term sequences f such that (1) if $i \leq n$, the *i*th term of f belongs to T_{i} , (2) some infinite subset of J intersects each term of f, and (3) if for each i > 1 every element of T_i is a subset of some element of T_{i-1} then f is decreasingly monotonic. For each n > 1 and sequence f in F_n there exists a sequence f' in F_{n-1} such that if $i \leq n-1$, the *i*th term of f' is the *i*th term of f. Since each collection F_n is finite, there exists a sequence f_1, f_2, f_3, \cdots such that, for each n, f_n belongs to F_n , and if n > 1 and $i \le n-1$, the *i*th term of f_{n-1} is the *i*th term of f_n . There exists a nonrepeating sequence P_1, P_2, P_3, \cdots such that for each n, P_n belongs to J and every term of f_n . It follows inductively that if for each n, R_n denotes the nth term of f_n , then each R_n contains all except finitely many terms of P_1, P_2, P_3, \cdots . Each R_n belongs to G_n and thus in view of the conditions on G_1, G_2, G_3, \cdots it may be seen that some element M of G contains a point X such that every domain in Σ to which X belongs contains infinitely many of the points P_n . If the domain R in I contains M then it has an infinite intersection with G', for no set in this collection contains two of the points P_n and R^* is a domain in Σ .

THEOREM 3. If Σ is complete in sense A, so is I.

PROOF. Retaining the above notation and requiring that w_1 , w_2 , w_3 , \cdots be decreasingly monotonic we see that if n > 1 there exists some i > n such that w_i is a subset of h_n and h_{n-1} . For some $k \ge i$, w_i is an element h of H_k . By condition (3) in the proof of Theorem 1, h is a subset of the first region h' of H_n containing $M_{k,h}$. No term of w_1 , w_2 , w_3 , \cdots is a subset of a predecessor of h_n and the point $M_{k,h}$ lies in h_n . So h' is h_n . Similarly, h_{n-1} is the first element of H_{n-1} containing $M_{k,h}$. Hence, by condition (3), h_n is a subset of h_{n-1} and this, for analogous reasons, implies that h_{n-1} is the first element of H_{n-1} containing M_{n,h_n} . Therefore, by condition (2), each element of T_n is a subset of some element of T_{n-1} . So by definition of the collections F_n each R_{n+1} is a subset of R_n . Thus G contains an element M as in the above proof.

CONSEQUENCES. Terminology appearing below that is not explicitly cited or defined here is much as in [4].

A space satisfies Axiom 1_3 of [6] if and only if it is a regular T_1 space Σ as in the hypothesis of Theorem 1. A space satisfies Axiom 1 if and only if it is a regular T_1 space Σ as in the hypothesis of Theorem 2. In these spaces, a closed point set is compact [1] if and only if it is bicompact [6, Chapter 1]. So if Σ satisfies Axiom 1_3 , I is regular and T_1 . Moreover, it may be seen that if β is the boundary of an element of an upper semicontinuous decomposition of a regular T_1 space and the decomposition space satisfies the first axiom of countability, then β is bicompact if and only if every collection of domains covering β is refined by a point countable collection of domains covering β . Thus the following theorem is a corollary to Theorems 1 and 2.

COROLLARY 1. If (1) U is an upper semicontinuous decomposition of a space satisfying Axioms 0 and 1_3 (Axioms 0 and 1) and (2) any collection of domains covering the boundary β of an element of U not a domain is refined by a point countable collection of domains covering β , these conditions are equivalent:

- (1) The decomposition space satisfies $Axiom 1_3$ (Axiom 1).
- (2) The decomposition space satisfies the first axiom of countability.
- (3) No element of U has a noncompact boundary.

The hypothesis of Corollary 1 involving point countable refinements is nonsuperfluous: There exists an upper semicontinuous decomposition of a certain space satisfying Axioms 0 and 1 such that, while the decomposition space is metrizable and compact, the decomposition contains an element with a noncompact boundary [6, (implicitly) p. 66].

Normalcy is preserved by every upper semicontinuous decomposition of a normal space. Moreover, if β is the boundary of an element of an upper semicontinuous decomposition of a normal T_1 space Sand the decomposition space satisfies the first axiom of countability, then β is compact [7]. If, additionally, S satisfies Axiom 1₈, β is bicompact. So the following theorem is a corollary to Theorems 1 and 2.

COROLLARY 2. If U is an upper semicontinuous decomposition of a normal space satisfying Axioms 0 and 1_3 (Axioms 0 and 1), these conditions are equivalent:

(1) The decomposition space is a normal space satisfying Axioms 1_3 (Axiom 1).

- (2) The decomposition space satisfies the first axiom of countability.
- (3) No element of U has a noncompact boundary.

Collectionwise normalcy [2] is preserved by upper semicontinuous decompositions of collectionwise normal spaces. Every collectionwise normal space satisfying Axioms 0 and 1_3 is metrizable [2]. Every metrizable space complete in sense C is metrically topologically complete [9]. The next theorem follows from these theorems and Corollary 2.

COROLLARY 3 (MORITA-HANAI [7, THEOREM 1] AND A. H. STONE [12, THEOREM 1]; I. A. VAINŠTĚIN [13, THEOREM 6]). If U is an

J. M. WORRELL, JR.

upper semicontinuous decomposition of a space that is metrizable (metrically topologically complete), these conditions are equivalent:

(1) The decomposition space is metrizable (metrically topologically complete).

(2) The decomposition space satisfies the first axiom of countability.

(3) No element of U has a noncompact boundary.

The theorem of Morita-Hanai-Stone may also be derived from Corollary 1, the paracompactness of the closed continuous images of paracompact Hausdorff spaces [5], and the Nagata-Smirnov theorem [8], [11].

References

1. P. S. Alexandroff and P. Urysohn, *Mémoire sur les espaces topologiques compacts*, Verh. Nederl. Akad. Wetensch. Afd. Naturk. Sect. I, 14 (1929), no. 1, 1-96.

2. R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186.

3. M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74.

4. J. L. Kelley, General topology, Van Nostrand, New York, 1955.

5. E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822-828.

6. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ. Vol 13, Amer. Math. Soc., Providence, R. I., 1962.

7. K. Morita and S. Hanai, *Closed mappings and metric spaces*, Proc. Japan Acad. 32 (1956), 10-14.

8. J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A. 1 (1950), 93-100.

9. J. H. Roberts, A property related to completeness, Bull. Amer. Math. Soc. 38 (1932), 835-838.

10. Mary Ellen Estill Rudin, Concerning abstract spaces, Duke Math. J. 17 (1950), 317-327.

11. Yu. M. Smirnov, A necessary and sufficient condition for metrizability of a topological space, Dokl. Akad. Nauk SSSR 77 (1951), 197-200.

12. A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690-700.

13. I. A. Valnštelin, On closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 57 (1947), 319-321. (Russian)

THE UNIVERSITY OF TEXAS AND SANDIA CORPORATION

490