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1. Introductions and definitions. Suppose X and Y are linear

normed spaces, B = B[X, Y] is the space of bounded linear trans-

formations from X into Y, and C is the space of X-valued continuous

functions on O^igl with ||/||c = max0sljSi ||/(i)||x. An integral repre-

sentation theorem for the transformations TEB[C, Y] was recently

given by Tucker [8]. This representation theorem includes the classi-

cal Riesz representation theorem [ô] as a special case. Hildebrandt

[4] and Hildebrandt and Schoenberg [5] have shown that the classi-

cal Riesz theorem is equivalent to the Hausdorff theorem [3] on

convergence-preserving Hausdorff summability methods. In this

paper we will discuss summability methods in the general setting of

the representation theorem given by Tucker, and show that the

representation theorem is equivalent to a general Hausdorff theorem.

We suppose that F+ is the weak extension [8] of Y.

Definition 1. The statement that 9TC is a summability method

from X to Y+ means that Sffï is a matrix (/„,„) of elements of B.

Definition 2. The statement that 3TC is a convergence-preserving

method means that if {x„} is a convergent sequence of points in X,

then ym= E«=o/mn(x") exists in Y+ for each m, and {ym} is a con-

vergent sequence of points in Y+.

Definition 3. If L is a linear transformation from X to F+, the

statement that 911 is regular relative to L means that Sfit is convergence

preserving and has the property that if xn converges to x in X, then

ym converges in F+ to L(x).

Definition 4. The statement that a summability method 9TC is a

Hausdorff method generated by the sequence {pn} of points in B

means that 9TC = pp.p, where p. = diag (p0, px, • • • ) and p = (pmn) is the

differencing matrix given by

(m\
Pmn = (-1W       I if n g m,

pmn = 0 if n > m.

A direct computation [3] shows that 3TC is a Hausdorff method gener-

ated by {pn} if and only if 3TC= (Xmn), where
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C)Am~npn ii n ¿m,

Xmn = 0 if n > m.

2. Convergence-preserving methods. In this section we seek neces-

sary and sufficient conditions for îiïl to be convergence preserving.

The resulting theorem includes the classical Toeplitz theorem [3 ] as

a special case. Consider the following conditions.

Condition A. There exists a number M such that if {x„} is a

bounded sequence of points in X, then|| 52S=o/mn(^»)||rá M sup„||x„||x

for all non-negative integers p and m.

Condition B. If xQX, then for each non-negative integer n, fmn(x)

converges in Y+ as m—»°o. We will call this limit cn(x).

Condition C. If xQX, then rm(x) = ^T=0 fmn(x) converges in Y+ as

ira—»co. We will call this limit L(x).

It will be shown in the next section that Condition A implies that

the function rm(x) defined in Condition C exists.

Lemma 1. Condition A implies that the numbers ||/mn||B are bounded

uniformly in m and n.

Proof. Consider an fmn. If e>0 there exists xQX such that

||x||x=l and ||/OTn||Bá||/mn(a;)||r + «. Ii a sequence {x,} is defined by

Xj = 6 iij^n and x, = x if j = n, then

\\Un(x)\\r = 7 . Jmn \Xj)
i=o

¿ M sup||x,-||x = M.
Y 1

Thus ||/m„||.BÍ=.M+e, which implies that ||/mn||,BáAf.

Lemma 2. Conditions A and B together imply that cnQB[X, Y+].

Proof. It is clear from definition that c„ is linear. To show that

c„ is bounded, we consider y*£ Y* where Y* denotes the conjugate

space of Y. Then

k(*)lk sup lim y*fmn(x)
IIHIái

ásup||/m4|B||x||x^ M\\x\\x

¿    sup     limsup||y*|| ||/mn(x)||r
IIv*IISl        m-»«o

by Lemma 1.

Lemma 3. Condition A implies that XXo Cn(xn) exists in Y+ for

any bounded sequence {xn} of points in X.



I9°5l VECTOR-VALUED SUMMABILITY METHODS 421

Proof. Suppose y*, y*E Y*. Then y* may be extended to operate

on Y+ [8], and if e„ = sgn y*cn(xn), we have

P V V

E   I y*Cn(Xn) |    =   E y*Cn(inXn)   =   y? E C»(«n*n)

yx* E ¿»(en**) áll^lk-

¡yi||y*   sup
ll»,*!lái

/   / Cn\£nXn)

n-0

lim y2* E/™(e«*n)

y+

m-> » B=o

g ||y*||r*   sup     lim sup ||y2*||y*   E/«"»(«»*»)
Hl/2*||S1        m->» I „„o

^ ||yi*||r»Msup||xB||x.

It follows that y* E»-o c„(xn) converges absolutely, so En>o cn(xn)

exists in F+ for each xG^.

Lemma 4. Conditions A owd C together imply that LEB[X, Y+].

Proof. L is clearly linear, and the proof that it is bounded is essen-

tially the same as the proof of Lemma 2.

Lemma 5. If X is complete, then the space x of convergent sequences

{xn} of points in X with \\ {x„}||x = sup„ ||x„||x is complete.

The proof of Lemma 5 is straightforward and is omitted.

We are now prepared to give a characterization of convergence-

preserving methods.

Theorem 1. If X is complete, then 31Z is convergence preserving if and

only if Conditions A, B, and C hold.

Proof. We first show the sufficiency of Conditions A, B, and C.

Suppose xn—*0 in X. If «>0, there exists a number 7V>0 such that

||xn||x<e/4ikf and || E^n+i Cj(xj)\\Y+<e/i if n>N. Then

ym-1L cj(xj)
3=0

E [/«;(*;) - Cj(xj)]
3=0

+

Y+
¿_,    fmj(Xj)

j=n+X

+

J Y+
E   C)(Xj)

i=n+l Y+

E [/»>>(*>)  - Cj(Xj)]
3-0

+ M sup||*y||x + E   Cj(Xj)
3=1»+1 y+

Now we pick n — no > N. By Condition B we may pick m large enough
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so that each term in the first expression is less than é/4m0- Combining

this with theother estimates given above, we have ||ym— ]C¿=oc¿(xj)||ir+

¿tn0/ino + M(e/iM)+e/4:<e if m is sufficiently large. Thus ym con-

verges (to 22>o ci(xi)) in Y+. Now suppose that x„—>x?¿0. If x„'

= x„ —x, then x„'—>0 and by the above argument, y'm= ^ñ~o/««W)

converges in F+ to X)"-oC,(x/) as m—>=o. Then ym= XXo/mnOO

= 2-M=0 fmn(Xn  +X) = 2-in-0 Jmn(Xn ) + 2-iU-O Jnn\%) ~ ym + rm(X) .       But

this converges in F+ to ^™0 Cy(x/)+i(x). Therefore, ym converges

in F+ to E;-o^/)+iW = E;=oCJ(xJ) + (i-E;=o^)(x)=y.
Hence Conditions A, B, and C are sufficient.

Now suppose that 3TC is convergence preserving. Suppose {x„|

= {x}, then xn—>x so ym— Z»=o/mW converges in F+, i.e., Condi-

tion C is necessary.

If we let xa = x if n = k and x„ = 0 if n^k so that xn—>d, then ym

= 'Y^n-ofmn(xn)=fmk(x) converges in F+. This gives the necessity

of Condition B.
Condition A requires a different approach. We use the fact that

F+ is imbedded isomorphically and isometrically in Y** [8]. Define

transformations Fmp of % into F** by Fmp{x„} = ^in=0fmn(xn), where

this is considered as a point in F**. Fmp is clearly linear. Since

II     V I V

||Pmj>{*»}||r« =       E/™W =   Z) ||/mn||.B[X,r«]||xB||x
II n=0 I   y** n-0

á ( ICH/—IUtr.yi)||{*.}||x,
\ n=0 /

Fmp is bounded. Now, if {x„} is a fixed convergent sequence, since

2flt is convergence preserving, Pmp{x„} converges in Y** as p—>«>.

Call the limit Fm {x„}. Pm is linear, and by the uniform boundedness

principle there exist numbers Km independent of p such that

\\Fmp\\Blx,Y**]¿Km. Therefore, FmQB[x, Y**] and \\Fm\\Blx,Y**]¿Km.

Again, since 3TC is convergence preserving, ym=Fm\Xn] converges in

Y** as »»—>«>. Call this limit <ß{x„}. £ is clearly linear. By the uni-

form boundedness principle there exists a number M such that

||P..||j>[x.r"]áJlf for all m. Thus ££P[x, F**] and \\£\\b1x,y**]¿M.

The statement that ||Pm||stx.r«] =1M says that || ^^oÍ^Á^Wy**

¿Msupn \\xn\\x, i.e., ||2^=o/«»(*n)||r+áilí'supn||xn||x, which is

Condition A. We may also observe at this point that if we restrict £

to constant sequences {x} and consider the ranges of £ and Fm as

F+insteadof F**,wehave£Jx} =limm^aFm{x} =limm^M XXo/».n(x)

= limm^x,rm(x)=L(x).
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3. Regular methods. As in the classical case, Conditions A, B, and

C can be altered to give a characterization of regular summability

methods. Specifically, we consider these:

Condition A'. There exists a number M such that if {x„} is a

bounded sequence of points in X, and m isa non-negative integer,

then || E«=o/mn(xn)||y+á Af sup„ ||xB||x.

Condition B'. If xEX and n is a non-negative integer, then/m„(x)

converges in Y+ to 6 as m-+ 00.

Condition C. If xEX, then rm(x)= En-o/mnM converges in F+

to L(x) as w—>oo.

It is clear that Conditions B' and C imply Conditions B and C.

Lemma 6. Condition A is equivalent to Condition A'.

Proof. Suppose A holds. Consider y*EY*, {xn} a bounded se-

quence  of  points  in  X,  and  m  a  non-negative  integer.   Set  e„

= Sgn       y*fmn(Xn).       Then En-O |    y*fmn(Xn)   I   =  E«=0    y*/mn(e»X„)

= y*En=o/m»(É»*»)=  |y*E«=o/mn(e«*n) | á ||y*|| Y* M SUpB ||xB||x.       It

follows that y * EL 0/»«(*») converges, i.e., E>T=o/mn(*»>) exists in

F+. We estimate its norm as a point in Y+:

¿^i fmn\.Xn)
n=0

=   sup
llHISi

Y+

V

lim y* E/>»»(*>>) sup     lim
IIHISi j>-»«>

y* E /»»(*»)
n=0

g    sup     lim ||y*||y*
IIHIS1   j)-*«o

^ Msup||x„||x.

/  . Tmn\ Xn I ^    sup     lim ||y*||y*lí sup||x„||x
y llï*ll ¿X   2>->eo II

This is Condition A'.

Now suppose that A' holds and {x„} is a bounded sequence of

points in X. Consider a new sequence {xB} defined by xB = x„ if

n^p and xB = 0 if n>p. Then

M sup||xB||x à If sup ||x„ ||x è

/ .fmn\Xn )

/  . Jmn\Xn )

)

V

/   1 Jmn\Xn)

Y+

'   ' fmn\Xn )
Y+

n=0

This is Condition A.

Observe that if Condition A holds and {xB} is a bounded sequence
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of points in X, the proof of Lemma 6 shows that the infinite sum in

Condition A' exists. If we take {xn} = {x}, it shows that the infinite

sums in Conditions C and C exist. We state this formally as a lemma.

Lemma 7. Either of the Conditions A or A' imply that E™-o/»»»(*»)
exists in Y+ for any bounded sequence {xB} of points in X.

Theorem 2. If X is complete, then 3H is regular relative to a linear

transformation L from X to Y+ if and only if Conditions A', B', and

C hold.

Proof. We have noted that Conditions A', B', and C imply Con-

ditions A, B, and C. In fact, cn(x) =6 and limm<00 rm(x) =L(x) in F+.

By Theorem 1, 9TC is convergence preserving, and, since cn(x) =0, 911

is regular relative to L. Therefore, Conditions A', B', and C are

sufficient. Recall that Lemma 4 applies so that L is a bounded trans-

formation. The necessity of Conditions A', B', and C is proven the

same as in Theorem 1 except for trivial modifications.

4. Equivalence of the Hausdorff moment problem and the Riesz

representation theorem.

Definition 5. The statement that {p„} is a moment sequence

means that the Hausdorff method generated by {p,B} satisfies Condi-

tion A of Theorem 1.

Lemma 8. {pn} is a moment sequence if and only if there exists an

M independent of m and xn such that

n-o \ n /
fXn ' Xn á üfsup||xB||x

for each bounded sequence {x„} of points in X.

Proof. By Lemma 6, Condition A is equivalent to Condition A'.

Applying A' to the Hausdorff method generated by {pn} yields

M sup||xB||x à
n

/ . Kmn\Xn) E( )Am-npn-Xn
n-o \ n /

E( '   )Am-"pB-x„
n-o \ n /

Conversely, if

E(       )Am-"pn-Xn
n=o \ n /

û M sup||x„||x,

Condition A' holds and thus Condition A holds.
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We now make formal statements of the representation theorem

and the moment problem.

Statement Si. If TQB[C, Y], then there exists a function K(t)

QB[X, Y+] with the co-property such that Tf = fldK(t) -f(t) [8].
Statement S2. If {pn\ is a moment sequence, then there exists a

K(t)QB[X, F+] and satisfying the co-property such that pnx

= JldK(t)-(tnx) iorxQX.
The proof showing the equivalence of Si and S2 utilizes the next

two lemmas about Bernstein polynomials. Slight modifications of the

classical arguments will give proofs for our context.

Lemma 9. IffQC, then

Bmf(t) = Z(m)t"(l - t)-f(-)
n=o\n / \ m/

converges uniformly to f on 0¿t¿l.

Lemma 10. If Pk(t)=x0+Xit+ • ■ ■ +xktk (x{QX), then Pk(t)QC

and Pk(t) =Bm(Pk(t))- E*=í Pß(t)/m' (k^2, n^l), where pjk(t) is a

polynomial with coefficients in X and is independent of m.

Tucker [7], [8] has shown that a given TQB[C, Y] induces a

unique 3£P[CP, B] where CR denotes C when X is the real field,

with the property that T(f-x) = (3/) -x where fQCR and xQX.

Theorem 3. If X and Y are complete, then Statement Si is equivalent

to Statement S2.

Proof. Assume Si holds, and suppose that {pn} is a moment

sequence. For t real and xQX, define a transformation T mapping

tkx into pkx, and, similarly, define 3 mapping tk into pk so that T(tk-x)

= 3(tk)-x=pkx. Define T linearly so that T(Pk) = P(En-o *»*")

= S»-o Pv.xn= ]C«=o 30") '#»• We first show that T is bounded as a

linear transformation from X-valued polynomials into F.

îW) = E     )t /»(i - ty-j (—)
n-o \ » /    L \ m/J

= î:(m)^n^ - t)m-»)-f(-) - ¿ (m ) a—pn •/(-).

n=o \ w / \m/      n=o\n / \mj

Therefore,

rPm/||r = | £(*)A—,*»•/(-)
I n-o \ « / \m/

y ¿ M sup
\ml \

¿M c,



426 L. C. KURTZ AND D. H. TUCKER [June

by Lemma 8, since  {jun}  is a moment sequence. By Lemma 10,

||r(P*)||y^l|r23m(P,)||y+E^i (l/»0||2>y*(0||i-, where pjk(t) is in-
dependent of m. If é>0, there exists jlf>0 such that ||r(Pfc)||y

a||rPmP/t||r+eâ Af||P*|k+€- This gives the boundedness of T on

polynomials Pk. If, then fEC || P(23m/-Pn/)||yg Af||Pm/-PB/||c
implies that {TBmf} is Cauchy in Y, since {Pm/} is Cauchy in C.

Since Y is complete, TBm(f) converges. Call its limit Tf. T is clearly

linear on C and || r(/)||yáli"||/||c. Now, by Si, there exists K(t)

EB [X, Y+] with the cu-property such that Tf=fldK(t) -f(t). In par-
ticular, if f(t) =tnx, then T(tnx) = p.B(x) = fldK(t) ■ (tnx).

We now show that S2 implies Si. Here we suppose a continuous

linear mapping T of C into Y is given. This T generates a unique 3,

which maps CR into B[X, Y]. Define p,B= 3(in). Then 3(tn(l-t)m~n)

=An~npn. We wish to show that {pn} is a moment sequence.

A/^\ I ^/w\
E ( ) A—»/X» -Xn =       E ( ) 3(¿"(1   - 0"~") • Xn
n-0 \n / Y        \   n=0 \ W /

^/w\

n=o\n /

á ||r|| sup||xB| x,

the last inequality following from a theorem on convexity (see Dun-

ford and Schwartz [l, p. 410]). By Lemma 8, {pn} is a moment se-

quence. By Statement S2, there exists a K(t)EB[X, Y+] with the

co-property such that pnx = fldK(t) ■ (tnx). Now suppose fEC. From

the linearity of 3 and the continuity of T, it follows that Tf

= limm^M TBm(f) =limTO<00 fldK(t) •Bm(f). Gowurin [2] has shown that

if K(t) satisfies the w-property, and fEC, then fldK(t) •/(/) exists in

Y+ completed. Denote this completion by F+. If we consider

limm*.x fodK(t)-Bm(f) as a point in this completion,

f dK(t)-Bmf-  f dK(t)
\J a Jo Y+

(WoK)\\Bmf-f\\c,

so limro^ JldK(t) -Bmf exists and is equal to f\dK(t) -f(t) in Y+. But
since T is continuous, TBmf converges to Tf in Y. Therefore the con-

vergence of the integral fldK(t) ■ Bm(f) to the integral f\dK(t) -f(t)
actually occurs in F, i.e., Tf = fldK(t)-f(t) in F. This completes the

proof of Theorem 3.

The proof of Theorem 3 provides a partial answer to a question

raised by Tucker [8]: For what functions K(t)EB[X, F+] and hav-
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ing the co-property will the transformation Tf=fldK(t) -f(t) actually

map C into F?

Corollary 1. If X and Y are complete, a function K(t)QB[X, Y+]

having the oi-property will generate a transformation TQB [C, Y] if and

only if the sequence {pn} given by pn= 3(t") = f01dK(t)-tn is a moment

sequence.

In Theorem 4 and its subsequent remarks we assume X and F are

complete.

Theorem 4. A Hausdorff method is convergence preserving if and

only if it is generated by a moment sequence.

Proof. The proof one way is trivial because if the method is con-

vergence preserving it must satisfy Condition A of Theorem 1. This

is the definition of a moment sequence. Suppose, then, that H=ppp

where \pn] is a moment sequence, i.e., Condition A is satisfied. Condi-

tion C is also satisfied because

E Xmn(x) = E(       ) Am-"Mn-x = po(x),
n=0 n-0 \ n /

which is independent of m. In fact, the i of Condition C is po for this

case. We need only to show Condition B is satisfied, that is,

o-Xmn(x) = (       )Am-npn-x

converges in F+ for each n as m—><». By Theorem 3, there exists

K(t)QB[X, Y+] such that pnx = f10dK(t) •(*»*). If F*QB*[X, Y+],
F*K(t) is of bounded variation on 0¿t¿l [8]. Suppose y*QY*.

y*Pn(x)=f10t"dy*(K(t)-x). Since y*[(-)x]QB*[X, Y+], y*[K(t) -x] is

of bounded variation on 0¿t¿ 1. Therefore, the sequence \y*pn(x)}

is a real moment sequence and must satisfy Condition B for the

classical Toeplitz theorem [3], that is,

/m\
lim I       1 Am~n(y*Mn^)

m-»«o \ n /

converges. This may be written

(m\
) Am~np„x

n /

converges, which says
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lim f        1 Am~npnX
m-»«o \n /

exists in F+. This is Condition B. Since we now have all three condi-

tions of Theorem 1, H is convergence preserving.

We may summarize the results of this section as follows. The fol-

lowing three statements about a Hausdorff method H(p) are equiv-

alent.

(1) {pn} is a moment sequence.

(2) H(p) is convergence preserving.

(3) There exists a function K such that K(t)EB[X, Y+], K has

the co-property, and pnx = fldK(t) -(tnx) for each xEX and «^0.
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