PERFECT NULL SETS IN COMPACT HAUSDORFF SPACES

R. B. DARST¹

Our purpose is to establish the following

THEOREM. Suppose μ is a nontrivial regular nonatomic Borel measure on a compact Hausdorff space X. Then X contains a perfect set P such that $\mu(P) = 0$.

To this end, we shall use two theorems of W. Rudin [1]:

[R₁]. If Q is a compact Hausdorff space without perfect sets and $f \in C(Q)$, then f(Q) is countable.

 $[R_2]$. If Q is a compact Hausdorff space without perfect sets, m is a regular Borel measure on Q and if m(E) = 0 for every set E which consists of a single point, then m(Q) = 0 (i.e., m vanishes identically).

PROOF. By $[R_2]$, there exists a perfect subset A of X. If $\mu(A) = 0$, we are through; otherwise, considering the restriction of μ to A, it suffices to suppose that X is perfect. It then follows from a proof of Urysohn's Lemma that there exists a continuous function f from X onto the real interval [0, 1]. Let $\{C_{\lambda}\}$ be an uncountable collection of pairwise disjoint closed perfect subsets of [0, 1]. The inverse images, $X_{\lambda} = f^{-1}(C_{\lambda})$, are pairwise disjoint closed subsets of X each of which, by $[R_1]$, contains a perfect set P_{λ} . Let $P = P_{\lambda}$ where $\mu(P_{\lambda}) = 0$.

BIBLIOGRAPHY

1. Walter Rudin, Continuous functions on compact sets without perfect subsets, Proc. Amer. Math. Soc. 8(1957), 39-42.

PURDUE UNIVERSITY

Received by the editors February 8, 1965.

¹ Supported by National Science Foundation Grant GP 03515.