
ON THE SUBDIFFERENTIABILITY OF
CONVEX FUNCTIONS

A. BR0NDSTED AND R. T. ROCKAFELLAR1

1. Introduction. Let £ be a locally convex Hausdorff topological

vector space over the real numbers R with dual E*. Let/be a proper

convex function on E, i.e., an everywhere-defined function with

values in ] — °°, °° ], not identically + oo, such that

(1.1)   fi\x + (1 - \)y) g X/(x) + (1 - X)/(y) if * G E, y G E,

0 < A < 1.

A vector x*GP* is called a subgradient of / at xGP if

(1 • 2) fiy) è fix) + iy - x, x*)    for all   y G P.

(Thus the subgradients of / correspond to the nonvertical supporting

hyperplanes to the convex set consisting of all the points of E®R

lying above the graph of /.) The set of subgradients of / at x is de-

noted by dfix). If d/(x) is not empty, / is said to be subdifferentiable

at x. If/actually had a gradient x* = V/(x) at x in the sense of Gateaux

(or Frechet), one would in particular have d/(x) = {V/(x)} (see Moreau

[5, p. 20]).
It is immediate from (1.2) that dfix) is a weak* closed convex set

in E* for each xGP, and that the effective domain

domd/ = {x| dfix) ^ 0}

of the subgradient mapping 3/: x—>3/(x), i.e., the set of points where

/ is subdifferentiable, is contained in the effective domain of /, which

is the convex set

dom/ = (x|/(x) < =o}.

One would like to know when dom 3/ is dense in dom /. This is cer-

tainly true whenever

(fix)   if x G dorn df,
(A)     fiy) = lim mí fix) for ally,       /(*) = \n .

i-»i/ 1+ «>  otherwise.

Condition (A) says dom 3/ actually has a dense intersection with

every (convex) set of the form {y|/(y) <(y, y*)— /¿}, y*GP*, aGÄ.

One may also ask whether/ is the supremum of the supporting affine
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functions determined by its subgradients, i.e.

(B) f(y) = sup{/(x) + (y-x, x*) | xEdomdf, x* G df(x)} for all y G E.

Conditions (A) and (B) would each require that / be lower semi-

continuous (l.s.c).

Moreau [S] has shown that if a bicompact convex function (see

below) exists on E, then, conversely, (A') and (B) are true for every

l.s.c. proper convex function / on E, where (A') is the weaker version

of (A) obtained when J is replaced by its convex envelope, which is

the largest convex function majorized by /. (Condition (A') says

solely that / is completely determined by its values at the points

where it is subdifferentiable, i.e. that/is the l.s.c. convex envelope of

J.) He has also shown that a bicompact convex function does exist

if E is a reflexive Banach space.

We shall prove here that, in fact, a bicompact convex function

exists only if E is a reflexive Banach space in the Mackey topology

t(E, E*). But the l.s.c. proper convex functions on E are the same for

all topologies compatible with the duality between E and E*. In

other words, when proving theorems about conditions like (A') and

(B), one can assume without loss of generality that the given topology

on E coincides with its Mackey topology. Thus Moreau's general

theorem about (A') and (B) turns out to be equivalent to his special

theorem for reflexive Banach spaces.

The latter result can be deduced more directly using arguments like

those in the recent paper of Bishop and Phelps [l] on the existence

of support points of convex sets. Indeed, we shall prove in this way

that (A) and (B) hold for every l.s.c. proper convex function / if E

is any Banach space. One cannot hope to extend this theorem much

further, however, in view of certain convex sets ingeniously con-

structed by Klee [3], [4]. These will enable us to display a l.s.c.

proper convex function / on a reflexive Frechet space (or on a pre-

Hilbert space if so desired) such that/ is nowhere subdifferentiable. Of

course, (A) and (B) fail in the worst way for such an /.

It would be interesting to know whether every space for which (A)

and (B) always hold is necessarily a Banach space "in disguise" (i.e.

in its Mackey topology) as the counter-examples seem to suggest.

We have not been able to answer this question.

2. The existence of bicompact convex functions. Throughout this

section, let/ be a l.s.c. proper convex function on E. The conjugate

of / is the function /* on E* defined by

(2.1)    f*(x*) = sup{ (x, x*) - f(x) | xEE)    for each x* G E*.
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It is known that/* is again a proper convex function on £*, l.s.c. in

the weak* topology (and hence a fortiori in the strong topology on

£*). Moreover, the conjugate/** of/* coincides with f on E (con-

sidered as a subspace of £**), i.e.

(2.2) f(x) = sup{ (x, x*) - f*(x*) | x* E E*}    for each x E E.

(This notion of conjugacy, originally due to Fenchel, is developed in

infinite-dimensional spaces in [2], [8], [9].) Notice that the state-

ments

(2.3) x* E df(x),      x E df*(x*),      (x, x*) = /(*) + f*(x*),

are equivalent by (2.1), (2.2) and the definition of a subgradient.

Moreau [5] defines/ to be bicompact il {x\f(x) ^(x, y*)— p} is a

weakly compact (convex) subset of E for all y*EE* and pER, and

\x*\f*(x*)¿(y, x*)— p.) is a weak* compact (convex) subset of E*

for all yEE and pER-

Theorem 1. The function f is bicompact if and only if the following

three conditions are satisfied:

(a) E is a reflexive Banach space in the Mackey topology t(E, E*)

(which is the strongest locally convex topology on E yielding the same

dual E*) ;

(b) / is finite throughout E;

(c) {x\f(x)^(x, y*)—p} is bounded in E for every y*£E* and

PER.

Proof. Suppose first that/is bicompact. Then (c) is trivially true,

and, for each fixed yEE, \x*\f*(x*) ^ (y, x*) —p) is weak* compact

for all pER- According to a remarkable new theorem of Moreau [7],

the latter property is equivalent to / being finite and r(E, E*) con-

tinuous at y. Thus (b) holds and / is t(E, E*) continuous throughout

E. In particular, {x|/(x) g/(0) + l} must be a weakly compact neigh-

borhood of 0. The existence of such a neighborhood implies that the

r(E, E*) topology is normable, and that the unit sphere for the norm

is weakly compact. But E must then be a Banach space under r(E, E*),

since the norm completion of the unit sphere is trivially contained in

its weak completion. Now (a) follows from the well-known fact that

a Banach space is reflexive if and only if its unit sphere is weakly

compact.

Conversely, suppose (a), (b) and (c) are satisfied. The convex sets

{x|/(x)^(x, y*)—p} are bounded by (c) and closed because / is

l.s.c. ; they must therefore all be weakly compact by reflexivity. On
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the other hand,/is r(£, £*) continuous throughout E by (b), because

a l.s.c. convex function on a Banach space is automatically continuous

on open sets where it is finite [2, p. 11]. The theorem of Moreau in-

voked in the first half of the proof now implies the sets {x*|/*(x*)

= (y< x*) — P-} are ah weak* compact. Thus/ is bicompact.

Remark. Moreau proved in [5] that the function/(x) =||x[|î', p> 1,

is bicompact on any reflexive Banach space. This is also a direct con-

sequence of Theorem 1.

3. Existence of subgradients. Let/ be l.s.c. proper convex on E.

For each e>0, we may define a set 3e/(x) of "approximate subgradi-

ents" of / at x by

6\/(x) = {x* | /(z) ä [fix) - e] + (z - x, x*) for all z G P}

= {x*|/(x)+/*(**) -(x,x*):ge}.

Since (3.1) represents 3e/(x) as the set of solutions x* to an infinite

system of linear inequalities, 3(/(x) is a weak* closed convex set in

£* for each e>0. Evidently 3s/(x) decreases as e decreases to 0, and

the intersection of the nest of 3e/(x) for e>0 is just dfix). Also,

3e/(x) is nonempty for e>0 and xGdom / by (2.2). The following

lemma, whose proof was suggested by that of the fundamental

lemma of Bishop and Phelps in [l ], estimates how well def "approxi-

mates" 3/.

Lemma. Assume that Eis a Banach space and that x*G3e/(x). Then,

for any X>0, there exist vectors xand x* such that ||x —x|| ^X, ||x* —x*||

^e/X and x*G3/(x).

Proof. Define the relation y^z, for y and z in dom/, to mean that

(3.2) (e/X)||y - z\\ á [fiy) - iy, **)] - [/OO - (*, **)].

It is obvious that -< is reflexive and anti-symmetric. Transitivity

follows from the subadditivity of the norm. Thus -< is a partial

ordering of the set dom /. By Zorn's Lemma, there exists a maximal

totally ordered subset M of {zGdom/|x-<z}. For notational con-

venience, we shall write M= {za|aG-f}, where I is a totally-ordered

index set. Since x*G3(/(x), (3.1) and (3.2) require

/(z„) — (za, x*) ^ fizß) — izß, x*) ï; fix) — (x, x*) — e > — oo when a< ß.

Therefore

(3.3) /(za) - (z„, x*) i p > - oo  as a Î .

This implies {za} is a Cauchy net. Indeed, for any ô>0 we could
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choose a large enough that f(zß) — (zß, x*) <p + 5(e/X) for all ß>a.

Then ||za— Zß\\ <5 lor all ß>a by the definition of -<. Inasmuch as E

is a Banach space, we may conclude {za} has a limit xEE. The lower

semi-continuity of / in (3.2) and (3.3) implies that xGdom / and

za-<x for all a. In particular x^ix, so that

(e/X)||* - *|| ^ - [/(*) -fix) -(*-*, **)] g a

by the definitions of -< and def. Hence ||x—x||^X. Furthermore,

#-<z can happen only for z = x, because the totally-ordered set M was

maximal. Therefore

(e/A)||x - z\\ > [f(x) - (x, x*)] - \j(z) - (z, x*)]    for all z ^ x.

This means that, in E®R, the sets

Ci = {<y,p)\ p u h(y) = f(x + y) -f(x) - (y, x*)\,

d= {{y,p)\p<-(e/X)\\y\\},

have no point in common. But G is a closed convex set, because it is

the supergraph of a l.s.c. proper convex function h, and C2 is an open

convex cone. Hence G and C2 can be separated by a hyperplane in

E(BR. Due to the nature of C2, we can take this hyperplane to be the

graph of a continuous linear function on E, thus there exists some

z*EE* such that

(3.4)    - W\)\\y\\ ^ (y, z*) g /(* + y) - f(x) - (y, x*)    for ail y.

Set x* = x*+z*. The left half of (3.4) says ||**-**|| áe/A, and the

right half says x*Edf(x).

4. Main theorem. The Lemma just proved is crucial in the follow-

ing result.

Theorem 2. If Eis a Banach space, then conditions (A) and (B) are

satisfied by every l.s.c. proper convex function f on E.

Moreover, the conjugates /* of such functions actually satisfy the

stronger conditions (A*) and (B*) obtained from (A) and (B) by re-

stricting attention to the existence of subgradients of /* belonging to E

(not just to £**).

Proof. Since / is l.s.c, (A) can be proved by showing that the

" lim inf " does not exceed f(x) when x E dorn /. Given any 5 > 0, choose

any x*Edff(x), where t = 5/2. Choose X>0 so small that X<S and

X||x*|| <5/2. Now let x and x* be the vectors whose existence is

guaranteed by the Lemma. The three conditions on x and x* then

yield



610 A. BR0NDSTED AND R. T. ROCKAFELLAR [August

/(*) — f(x) Ú — (x — X, X*) ¿ ||* — x\\ ||**||

= X(||**|| + e/X) < 5/2 + 5/2 = 5.

Thus *Gdom df, \\x — x\\ <S and/(*) </(x)+S. Since 5>0 was arbi-
trary, this yields (A).

Virtually the same argument proves (A*) holds for /*. This is

apparent if, in the wording of the Lemma, we set e/\=X*, X = e/X*,

and replace the conditions x*Gde/(x), x*E.df(x), by the equivalent

conditions xEdef*(x*), x<Edf*(x*). (The equivalence is immediate

from (2.3) and the symmetry in (3.1)).

The fact that (B) holds for / follows directly from (2.2) and condi-

tion (A*) for/*, because of (2.3). Similarly, (B*) for /* is a conse-

quence of (A) for /.

Remark. The Lemma can also be employed, much in the above

manner, to derive results of Bishop and Phelps [l]. In this case, one

would make use of the one-to-one correspondence between nonempty

closed convex sets C in E and their indicator functions Sc (where ôc

is 0 on C and + =° outside of C), which are l.s.c. proper convex func-

tions. The conjugate of 5c is the support function crc of C. Hence

x*Ed,8c(x) if and only if xEC and (x, x*) ^a — e, where

co > a = <rc(x*) = sup{ (z, x*) | z G C).

In particular, the nonzero subgradients of be at x are precisely the

vectors x* defining nontrivial supporting hyperplanes to C at x.

5. A counterexample. Klee [3] has constructed a nonempty closed

convex set C in a certain reflexive Frechet space E (actually a Montel

space), such that C has no support points whatsoever. This C hap-

pens to contain various half-lines emanating from the origin, but no

whole lines. Under these circumstances, we may construct a func-

tion/as follows. Fix any Xo^O such that {Xx0|X^0} QC. For each

x let

(5.1) /(*) = min{XGi?|x-r-Xit-oGC},

where the minimum is understood to be + » when no such X exists.

We shall prove that:

The function f is l.s.c. proper convex on E, but it is nowhere sub-

differentiable.
Since C contains no whole lines, / does not take on the value — a>.

The convexity condition (1.1) is easy to verify. To show lower semi-

continuity, we need to observe first that

(5.2) f(x -\- pxo) = f(x) — p   for all x G E and p G R.
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This implies each level set {x|/(x)á/¿} of / is a translate of C<¡

= {x|/(x)^0}. Obviously Cq'Q.C. The reverse inclusion is easy to

deduce from (5.1) using the fact that Cis closed and {Xx0|X^O} QC.

The (sub-) level sets of/are therefore all closed, so / is l.s.c. Finally,

suppose for a moment that / had a subgradient x* at some point x.

Then x G dom/and

(5.3) 00 > ix, x*) - fix) ^ iy, x*)    for all y G C

by (1.2), because / is nonpositive on C by definition. On the other

hand, (5.2) and (1.2) imply (x0, x*) = — 1. Hence

(5.4) x* 9^ 0   and    (x, x*) —fix) = (x +/(x)x0, x*).

But (5.3) and (5.4) say that C has a nontrivial supporting hyper-

plane at the point x+/(x)x0 (a point of C by the definition of/), and

we know this to be impossible. Therefore/cannot have a subgradient.

A similar example of a nowhere subdifferentiable / on an (incom-

plete) inner product space can be constructed, using definition (5.1),

from another of Klee's supportless convex sets [4]. In this case Xo^O

is arbitrary, and the lower semi-continuity of / follows easily from the

pre-compactness of the set in question.
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