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1. Introduction. Let M denote a differentiable manifold of dimen-

sion d and suppose that a differentiable symmetric affine connection

is given on M, where the word differentiable implies differentiability

of class C°°. Unless a particular class is specified this implication is to

be understood throughout the paper. Let <j> denote a diffeomorphism of

M onto itself ; then it is usual in differential geometry to define </> to

be an affine transformation, or a projective transformation, according

as <j> preserves the geodesies of the affine connection as parametrized

curves, or as point sets. These definitions still make sense if <j> is not

assumed to be a diffeomorphism but merely a one-to-one transforma-

tion of M onto itself, and it is natural to ask whether the definitions

then imply the differentiability of <¡>. We show that this is true under

the stronger assumption that <¡> is a homeomorphism, and with the

restriction d>2 for projective transformations. Our theorems are

formulated and proved for a general system of paths [l], which is a

more general structure than the system of geodesies of an affine con-

nection, but the proof of the theorem concerning projective trans-

formations is restricted to the reversible case. The author wishes to

thank Professor H. C. Wang for suggesting that some such extension

of the fundamental theorem of real projective geometry might be

possible.

2. Definition and properties of a general system of paths. We give

a global definition of a system of paths on M based on a slight modifi-

cation of the notion of a spray [2, p. 67]. Let T(M) denote the space

of tangent vectors to M, T'{M) the open submanifold of nonzero tan-

gent vectors, and -k the projection of T(M) onto M. We also identify

a real number 5 with the mapping X—>sX of T(M) into itself and de-

note the differentials of the mappings tt, s by 7r*, s*. Now suppose that

£ is a differentiable vector field on T'(M) satisfying the conditions

(i) *¿(X)=X,
(ii) £(sX)=s*s£(X) fors>0,

and extend £ to T(M) by defining it to be zero on zero vectors. Then

a path on M is a differentiable curve whose natural lift to T(M) is an
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integral curve of £. The totality of paths (for a given £) is called a sys-

tem of paths on M; it is not difficult to see that this definition agrees

with the one given in [l ]. If condition (ii) is also satisfied for 5 <0 then

the system of paths is said to be reversible; in this case £ is a spray.

We remark that the extension of £ to T(M) is, in general, of class Cl

only.

For XÇzT(M) denote by ßx the unique integral curve of £ with

ßx(0) =X, and let 3D be the set of vectors X such that |3x(l) is defined.

The mapping 3D—>Af defined by

X -+ irßx(l)

is called the exponential map and is denoted by exp. It follows from

[2, Chapter IV] that 3D is open, and that the exponential map is of

class C1 in general and of class Cx on ^>f\T'{M). The restriction of

exp to the tangent space Tx at xÇ,M is denoted by exp^. It follows

as in [2, Chapter IV, §4] that exp^ is a local diffeomorphism at the

zero vector of class Cl in general, and of class C°° on nonzero vectors.

The paths through x are just the curves t—>expx tX for XG Tx.

We now give several definitions. A neighborhood V of the zero

vector in Tx is star-shaped if, for each IGF, tX is also £ F for

05¡í^l. A normal neighborhood of xÇ^M is a neighborhood expxF

where expx is a diffeomorphism on V and V is star-shaped. A neigh-

borhood U on M is simple if, for any ordered pair of points y, z in

U, there exists at most one path from y to 2 lying entirely in U. This

is to exclude paths obtained by affine changes of parameter t' = at+ß

with a> 0. A neighborhood U on M is convex if any ordered pair of

points y, z in U can be joined by a path lying entirely in U.

Let x be any point of M; our proofs will use a neighborhood of x

which is simple, convex and contained in a normal neighborhood of

each of its points. We call such a neighborhood a C-neighborhood ;

the existence of such neighborhoods follows from the "fundamental

lemma" and Theorem 1 of [3].

3. The differentiability of affine transformations. We need the

following lemma concerning a system of paths on a differentiable

manifold M.

Lemma 3.1. Consider those positive values of t on two paths a(t)

= expx tA, b(t) =expI tB for which a(t) and bit) liein a C-neighborhood

U of x. Parametrize the unique path in U from a(t) to b(t) so that a(t)

and b{t) have parameter values 0 and 1 respectively, let eis, t) be the

point on this path of parameter value s (O^s^l), and put eis, t)

= expxtCis, t). Then
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limC(j, 0 = (1 - s)A + sB.
¡->o

Proof. We consider the local mapping expj1 exp of T(M) into Tx.

Using a local differentiable section {ei ■ ■ • e¿} of the frame bundle

over M we identify T(U) with UXRd and write the mapping as

Y=\¡/(y, X), where X and Y are vectors in Rd, ;y£ U and \f/ is differ-

entiable of class Cx at least. Denote by \p'(y, X) the derivative of the

mapping X—»p(y, X) of Rd into itself, this derivative being defined as

in [2, Chapter 1, §3]. Since ip(x, X) =X we have ^'(x, X) =1 where

/ denotes the identity transformation. We define a vector L(t) by

expa(i) L(t) =b(t) so that exp<J(() sL(t) =c(s, t), and we obtain the

equations

tA = i(a(t), 0),       tC(s, t) = i(a(t), sL(t)),       IB = *(a(t), Lit)).

Thus, with the standard norm in Rd,

\\tB - tA - L(t)\\ ̂  \\tB - tA - V(a(t), 0)L(t)\\

+ W(a(t), 0) - 7|| ||Z(0||

and, applying the mean value theorem [2, p. 11, Corollary 2]

\\tB - tA - L(t)\\ ú\\L\\(t)

■ Í   sup   \\t'(a(t), 8L(t)) - t'(a(l), 0)|| + \\V(a(t), 0) - /||1 •
l 0¿9SI J

Now it is clear that lim^o L(t) =0 so that, using the continuity of \¡/',

this inequality implies that

lim\\B- A - (£(0/0|l/||£(0/,l =0,
t-»o

and hence that

(3.1) lim (L(t)/t) = B - A.
i->0

A similar use of the mean value theorem gives

\\lC(s, t)-tA- sL(t)\\ g i||X(0||X(0

where limt,oX(¿)=0 and, combining this with (3.1), we obtain the

result stated.

Definition. An affine transformation of a system of paths on M is

a homeomorphism of M onto itself which preserves the paths con-

sidered as parametrized curves.
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Let <j> be an affine transformation and write x'=<f>(x) for x£M.

Let A be any vector in Tx and consider the path expx tA (t ^ 0) issuing

from x with tangent vector A. 0(expx tA) is a path issuing from x' and

can thus be written uniquely as expX' tA' where A'(ElTx>. We define

a mapping <¡>J of Tx into Tx> by putting <j)x {A)=A'. It is not difficult

to see that <¡>¿ is one-to-one, onto and positively homogeneous of

degree one. Locally we have the formula

$ = expx< <¡>¡¡ exp^1

and this equation, together with the homogeneity of <¡>¿, implies

that <f>x is a homeomorphism. We now prove

Lemma 3.2. <j>x is a linear transformation.

Proof. Choose C-neighborhoods U, U' of x, x' so that <j>(U)(ZU'

and consider those positive values of / on two paths expx tA, expx tB

for which these paths lie in U. With our notation their images under

4> are exp^ tA' and expx> tB'. Then, with the notation of Lemma 3.1,

construct points c(s, t), c*(s, t) in U, U' respectively and vectors

C(s, t), C*(s, t) in Tx and Tx>. Since <j> is an affine transformation

c*(s, t) =4>(c(s, t)) and C*(s, t) =& (CO?, t)). Letting i->0 in the last
equation we obtain, using Lemma 3.1 and the continuity of <¡>x ,

<j>J((í-s)A+sB) = (l-s)A' + sB' for O^s^l. This equation, to-

gether with the homogeneity of cj>x, shows that <j>'x is linear.

We can now prove

Theorem 3.1. An affine transformation is a diffeomorphism.

Proof. Let x be an arbitrary point of M and choose C-neighbor-

hoods U, U' of x, x' so that <£( U) C U'. Now choose a point y in U

distinct from x. Then Lemma 3.2 together with the local formula

4> = exp„- <f)y exp7x

shows that 4> is a local diffeomorphism at x. We add the remark that

4>x is the differential of <£ at x.

We can apply Theorem 3.1 to prove a theorem on Finsler mani-

folds generalizing Theorem 11.1 on p. 61 of [4]. For the purposes of

our theorem a Finsler manifold is defined as in [5] but with the

analyticity assumption replaced by a C°° assumption. We define an

isometry of M to be a diffeomorphism of M onto itself whose differ-

ential preserves the length of tangent vectors. On the other hand the

Finsler manifold can be given a metric space structure [5], where the

distance function is not necessarily symmetric. Then our theorem is
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Theorem 3.2. A distance preserving transformation of M onto itself

is an isometry.

Proof. The geodesies of a Finsler manifold form a system of paths

as defined in §2. Using the arguments given at the top of p. 61 of [4]

it can be shown that a distance preserving transformation is an

affine transformation which preserves arc length, and consequently

(¡>x preserves the length of tangent vectors. Theorem 3.1 implies that

4> is a diffeomorphism and the remark at the end of the proof of that

theorem shows that <£ is an isometry.

4. Lemmas. In §5 we show that Theorem 3.1 holds for projective

transformations of reversible systems of paths on manifolds of dimen-

sion greater than two. In the present section we give three lemmas

which we need in our proof of this fact.

Let V denote a real vector space of dimension d and origin 0, and

let V denote the space of nonoriented directions through 0. F is a

real projective space of dimension d— 1 and the canonical projection

p of V—O onto F is analytic and of rank ¿ — 1. Define a norm in F

by identifying F with Rd and using the standard norm in Rd. Then we

state the following lemma the proof of which is omitted.

Lemma 4.1. Suppose that Xn, Yn are sequences of vectors in V—0

such that \imn^xi\\Xn— F„||/|| Yn\\) = 0. Then limn<00 piXn) exists if and

only if limnj.w p(F„) exists, and the two limits are equal.

The next two lemmas concern a reversible system of paths defined

on a differentiable manifold M.

Lemma 4.2. Suppose a, b are two paths through a point x of M and

suppose an, bn are sequences on these paths lying in a C-neighborhood U

of x, and such that lim«..« a„ = ¡c = lim„^00 £>„. Let c„ be a point on the

path from c„ to bn in U. Then, if the direction at x of the path from x to cn

in U approaches a limit as n approaches infinity, this direction lies in

the plane determined by the directions of a, b at x. Further every direction

in the plane can be obtained as such a limit.

Proof. We use the mapping \piy, X) defined as in the proof of

Lemma 3.1 but with the local section chosen so that ei(x) =A, e2ix)

= B where A and B are tangent to a and b respectively. We write

an = exp» rnA, bn = expx snB = expa„ Ln,cn=exp* Cn = expa„ tnLn so that

rnA = \¡/ian, 0),       Cn = ^(a„, tnLn),       snB = ^(an, Ln)

where 0^fn^l. Then
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||i„J3 - rnA - Ln\\ ^ \\snB - rnA - t'(an, 0)Ln\\

+ ll^'K, o) - /|| llx.ll
and, applying the mean value theorem,

\\snB - rnA - Ln\\

g ||Z.|| |  sup  \\i'(a., OLn) - f (a», 0)|| + ||f (an, 0) - /|| 1 •

Now it is clear that lim„,„ L„ = 0 so that, using the continuity of $',

this inequality implies that

lim \\snB - rnA - Ln\\/\\Ln\\ = 0,

and hence that

(4.1) lim ||i„B - r„4|/||£»|| = 1.
n—» «

A similar use of the mean value theorem gives

\\C» - snB + (1 - I0Z.II á (1 - tn)\\Ln\\pn,

where lim„^0OXn = 0 = limn^oo p.n. Now we put Fn = (l— tn)rnA+tns„B

and, using these inequalities, we have

||C„  -   7.11   g   (1  -  /„)í„||Xn||(X„ + ßn).

Then (4.1) and the obvious inequality

2 2     2 2 2. 222
¿n(l   —  ¿n)   (/n + ín)   ^  rn(l   ~  tn)    +   tnSn

show that

lim (||C- 7B||/||7n||) =0.

Lemma 4.1 now implies that, if lining p(C„) exists, then it is equal

to lim„_M p(Yn) which obviously lies in the plane determined by p{A)

and p(B). Further, by choice of r„, sn, tn it is clear that one can ar-

range that limn<00 p(7„) exist and be equal to any direction in this

plane. Lemma 4.1 shows that limn^M p(Cn) is also equal to this direc-

tion. Thus Lemma 4.2 is proved.

Our next lemma is concerned with a mapping which generalizes
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bipolar coordinates. Let Tx denote the space of nonoriented directions

tangent to M at x and define a local mapping of M onto Tx by

Tx = px expz-1, where px is the canonical projection of Tx onto Tx. With

the exception of the point x itself rx is defined in a normal neighbor-

hood of x and is of class C°°. Now let y, z be two points lying in a C-

neighborhood Uand consider the Cx mappingtvz = tvXtzof U—{y,z}

into TVXTZ. We prove

Lemma 4.3. The rank of rvz is equal to dim M for points not on the

path in U through y and z.

Proof. The kernel of the different'.! oi ryz at a point *£ U is the

intersection of the kernels of the differentials of t„ and r«. Thus it

consists of the vectors at x which are tangent to both paths xy, xz

and can be nonzero only if x is on the path through y and z.

5. The differentiability of projective transformations.

Definition. A projective transformation of a reversible system of

paths on M is a homeomorphism of M onto itself which preserves

the paths considered as point sets.

Let <p be a projective transformation of M and write x' =<p(x) for

xE:M. We define a transformation 4>x of tx into T„> in the following

way. Let a denote a direction at x and let a be a path through x with

direction a. <pa is a continuous curve in M and, by hypothesis, its

point set lies on a path through x'. We define (j>x(a) to be the direction

of this path at x'. It is not difficult to see that <p~x is well-defined, one-

to-one and onto. To show that 4>x is continuous we first choose normal

neighborhoods U, U' of x, x' so that <p(U) C U'. Then we construct a

local analytic homeomorphism <jx of Tx into Tx, defined near a with its

image in exp*-^ U), and such that pxax is the identity transformation.

Then the formula

4>x — rX'4> exox o-x

shows that 4>x is continuous. We now prove

Lemma 5.1. For dim M>2, 4>xis induced by a linear transformation

of Tx onto TX', and is thus analytic.

Proof. The lemma follows from the fundamental theorem of real

projective geometry if we show that 4>x takes directions lying in a

2-plane at x into directions lying in a 2-plane at x'. To do this, con-

sider two directions a, ß at x and choose paths a, b through x with

these directions. Let y denote a direction in the plane of the direc-

tions a, ß. Now chooseC-neighborhoods U, U' of x, x' respectively
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so that <t>iU)C.U' and, with the notation of Lemma 4.2, construct

sequences an, bn, cn so that the direction yn of the path from x to cn

at x approaches 7 as n approaches infinity. Put 7„' = $x(7„) so that

7„' is the direction at x' of the path from x' to cñ =(j>icn) in U'. Then,

by the continuity of <b~x, limn^M 7«' exists and equals 4>xiy). Thus, by

Lemma 4.2, $1(7) lies in the plane of the directions <p~xia), 4>xiß).

We can now prove

Theorem 5.1. A projective transformation of a reversible system of

paths on M is a diffeomorphism if dim M>2.

Proof. With our previous .:stations let x be an arbitrary point of

M and choose C-neighborhoods U, U' of x, x' so that <£( Í/) C U'. Now

choose points y, z in U so that x does not lie on the path in U through

y and z. Then x' does not lie on the path in U' through y' and z' and,

because of Lemma 4.3,iy2' is a diffeomorphism of a neighborhood of

x' onto a submanifold of Tv< X Tz>. Thus on this submanifold rv-z> will

have an inverse which we denote by <sv<z>. Using Lemma 5.1 the local

formula

</> = <ty«'($j/ X <?2)tBj

shows that <p is a local diffeomorphism at x. We add the remark that

<t>x is induced by the differential of <¡> at x.
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