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PROOF. Let X; be the set of all x in X for which |«| =1. Since each
G;CG=gp X, we conclude by Lemma 8 that each G;Cgp X, and
hence that G=gp Xi. It follows from the irreducibility of X that
X=X,

This completes the proof of Grushko’s Theorem.
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1. Introduction. In an abstract published in 1961 [4] we announced
the following result:

Let A be an n-square positive semi-definite matrix and assume that
A =S where S is doubly stochastic. Then

(1.1) per (4) = nl/nn

The notation 4 =S means a;;=5s;;, 4, j=1, - + -, n. A doubly sto-
chastic (d.s.) matrix has non-negative entries and every row and
column sum is 1. The permanent, per (4), is the function defined by

(1.2) per (4) = > I awes
0ES, =1
where the summation extends over the whole symmetric group of
degree #, S,.
In 1962 [3] we also proved that:
If S is an n-square positive semi-definite symmetric matrix which is
doubly stochastic in the extended sense then

1.3) per (S) = nl/nn.
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A matrix is d.s. in the extended sense if every row and column sum
is 1; however, the elements need not all be non-negative. The in-
equality (1.3) constitutes what is currently known about a conjecture

of van der Waerden that states:

per (S)=n!/n»

for any n-square d.s. matrix S.

Observe that for the inequality (1.1) no assumption is made about
S being positive semi-definite, otherwise we obviously could get the
result from (1.3). One might wonder that if a d.s. matrix S exists for
which 4 =S, then perhaps a positive semi-definite matrix S; exists
which is d.s. in the extended sense and satisfies 4 = .S:. In other words
one could hope to relax the d.s. condition in exchange for positive
semi-definiteness. This is unfortunately not true. For, take

3 0§
A=10 10
20 3
which is obviously positive semi-definite. Clearly 4 =S where
0
1 0.
0 %

S is not positive semi-definite. Thus we can try for an S; such that
A =81, Siisd.s. in the extended sense, and S, is positive semi-definite.
Set

\

e

O we

S =

wed

a c 1—(a+¢)
S1 = c b 1— @0+
1—(a+c¢) 1—0+¢) a+b+2c—-1
If S; is to be positive semi-definite then
0<al@a+db+2c—-1)—(1—a—0c)
which simplifies to
(1.9 G+ a=(c—1)2

If A=S, then ab+a=<% and ¢=0, which are incompatible with
(1.4).

Since the appearance of the original abstract we have done a sub-
stantial amount of work on gemeralized matrix functions as originally
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defined by 1. Schur [7]. Thus let G be a subgroup of S, and let x be a
character (of arbitrary degree) of G. Following Schur we define the
generalized matrix function d, by

1.5) a(4) = X x(@) IT aw

o€EG =1

for any n-square matrix A. Clearly if G=S, and x is the character of
G identically 1 then d,(A4) =per (4).Schur [7, Theorem 1] has shown
that d,(4) >0 for positive definite hermitian 4. It follows that d,(4)
20 for positive semi-definite A. The purpose of this paper is to prove
the following:

THEOREM. Let A be an n-square positive semi-definite real symmetric
matrix and assume that A = S where S is doubly stochastic. Then

(1.6) dy(4) = m(x)/n
where
m(x) = EG x(0).

For G=S,and x=1, m=m(x) =n!, and (1.6) specializes to (1.1). Itis
always true of course that m(x) is either 0 or a positive integral multi-
ple of the order of G. More precisely let x=x1+ - - - +xx be a repre-
sentation of the character x as a sum of irreducible characters. Then
m(x)/g is the number of x; in this representation which equal the
trivial character 1. Here g is the order of G. Thus for nontrivial ir-
reducible x our theorem reduces to Schur’s result.

2. Preliminary results. The proof of the inequality (1.6) depends
on three theorems of interest in themselves.

TrEOREM 1. If V and W are arbitrary n-square complex matrices
then

(2.1) | & (VW) |2 £ & (VV*¥)d, (W*W).

This result has appeared as a research announcement [2].

THuEOREM 2. If A is a symmetric n-square matrix and A>3 (i.e.,
a;;>0,1,j=1, - -, n) then there exists a unique diagonal watrix

D=diag(dy, - -,d.),d;>0,4=1,---,n suchthat DAD is d.s.

The authors knew this theorem at the time of the announcement [4]
and shortly thereafter a constructive proof was found by Maxfield and
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Minc [6]. Independently Sinkhorn [8], [9] proved a closely related
result.

THEOREM 3. Let D be the diagonal matrix described in Theorem 2,
Moreover, assume that A =S where S is d.s. Then

(2.2) ITd: =1
i=1

Proor. For any n-square matrix X let 7,(X) denote the ith row
sum of X. Now 4 =S implies that DAD=DSD and since DAD is
d.s. we have

1 =7(DAD) 2 r(DSD) = d; 3, sid;.

=1
Thus

n n n

(23) 1= Hd‘ H Z Sijdj.

=1 =1 j=1
Let
n n 1/n
gX) = H( inidi)
=1 i=1

where X is an arbitrary d.s. matrix. It is a well-known result of
Birkhoff [1] that the totality Q, of #-square d.s. matrices is a convex
polyhedron with the permutation matrices as vertices. If X, YEQ,,
0=<60=<1, then the Hélder inequality implies that

n n 1/n
g0X + (1 —-0)VY) = H( 2 (Ox+ (1 — 0)y,~,~)d,->

=1 \ j=1

n n n 1/n
=11 (9 2 wudi+ (1 —6) X y;,-d,-)
=1

i1 =1
Z 0g(X) + (1 — 6)g(Y).

Hence g is concave on @, and assumes its minimum on a permutation
matrix. The value of g on any permutation matrix is just (7., d)/=.
From (2.3) we can conclude that

12 ooy 2 11

and (2.2) follows.
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3. Proof of the Theorem. In [5] it was proved that if R is any d.s.
positive semi-definite matrix then the positive semi-definite deter-
mination of the square root of R, R'/2, is d.s. in the extended sense.
In Theorem 1 let V=RY2 and W=J,, the matrix with every entry
1/n. Then RY2J,=J,, J2=J,, and thus

| dx(Ta) |2 S de(R)dy(Ja).

It is known from Schur’s theorems on the d, function that d,(R) =0.
(R is positive semi-definite.) Hence whether m(x) is 0 or not we have

CRY) dy(R) 2 dy(Ja) = m(x)/n"

We can assume by continuity that 4 >0 in proving (1.6). By Theo-
rem 2 choose a diagonal matrix D = diag (dy, - - -, d.), d; > 0,
1=1, - - -, n for which DAD=R is d.s. Then

(3.2) dx(DAD) = dy(R) 2 m(x)/n"
But by Theorem 3

(3.3) d4(DAD) = T1 ddy(4) = dy(4).

il
The inequalities (3.2) and (3.3) complete the proof.
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