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Proof. Let Xi be the set of all x in X for which | x| =1. Since each

GjQG = gp X, we conclude by Lemma 8 that each GjQgoXi, and

hence that G = gp X\. It follows from the irreducibility of X that

X = Xi.
This completes the proof of Grushko's Theorem.
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GENERALIZED FUNCTIONS OF SYMMETRIC MATRICES

MARVIN MARCUS1 AND MORRIS NEWMAN

1. Introduction. In an abstract published in 1961 [4] we announced

the following result:

Let A be an n-square positive semi-definite matrix and assume that

A^S where S is doubly stochastic. Then

(1.1) per (^4) ^ w !/»**.

The notation ^4^5 means an^si}, i,j=>l, •••,». A doubly sto-

chastic (d.s.) matrix has non-negative entries and every row and

column sum is 1. The permanent, per (A), is the function defined by

n

(1.2) per 04) =  E   IT «fa«

where the summation extends over the whole symmetric group of

degree n, Sn.

In 1962 [3] we also proved that:

If S is an n-square positive semi-definite symmetric matrix which is

doubly stochastic in the extended sense then

(1.3) per (S) ^ n\/n".

Received by the editors June 8, 1964.

1 The work of this author was supported by NSF Grant GP-1085.



i96j] GENERALIZED FUNCTIONS OF SYMMETRIC MATRICES 827

A matrix is d.s. in the extended sense if every row and column sum

is 1; however, the elements need not all be non-negative. The in-

equality (1.3) constitutes what is currently known about a conjecture

of van der Waerden that states :

per (5)^»!/«n

for any n-square d.s. matrix S.

Observe that for the inequality (1.1) no assumption is made about

5 being positive semi-definite, otherwise we obviously could get the

result from (1.3). One might wonder that if a d.s. matrix 5 exists for

which A = S, then perhaps a positive semi-definite matrix Si exists

which is d.s. in the extended sense and satisfies A ^ Si. In other words

one could hope to relax the d.s. condition in exchange for positive

semi-definiteness. This is unfortunately not true. For, take

A =

0   f

0    1    0

iî   0   3

which is obviously positive semi-definite. Clearly A^S where

S =

0    f
0    1

U   o

S is not positive semi-definite. Thus we can try for an Si such that

A =5i, Si is d.s. in the extended sense, and Si is positive semi-definite.

Set

a c 1 — (a + c)

Si m c b 1- ib + c)

i-ia + c)    I-ib + c)    a + 04-2c-lj

If Si is to be positive semi-definite then

0 =" aia + b + 2c - 1) - (1 - a - c)2,

which simplifies to

(1.4) ib + i)a ^ (c - i)\

If A^Si then öö+agf and ci£0, which are incompatible with

(1.4).
Since the appearance of the original abstract we have done a sub-

stantial amount of work on generalized matrix functions as originally
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defined by I. Schur [7]. Thus let G be a subgroup of Sn and let x be a

character (of arbitrary degree) of G. Following Schur we define the

generalized matrix function dx by

(1.5) ¿,w = Exwn^)
»EG <=1

for any «-square matrix A. Clearly if G = Sn and x is the character of

G identically 1 then dx(A) =per (A). Schur [7, Theorem l] has shown

that dx(A) >0 lor positive definite hermitian A. It follows that dx(A)

^0 for positive semi-definite A. The purpose of this paper is to prove

the following:

Theorem. Let A be an n-square positive semi-definite real symmetric

matrix and assume that A^S where S is doubly stochastic. Then

(1.6) dx(A) ¿i m(x)/n»

where

w(x) = E x(o-).
ceO

For G = Sn and x — 1» m = m(x) =»!, and (1.6) specializes to (1.1). It is

always true of course that m(x) is either 0 or a positive integral multi-

ple of the order of G. More precisely let x =Xi+ • • • +X* be a repre-

sentation of the character x as a sum of irreducible characters. Then

m(x)/g is the number of x¿ in this representation which equal the

trivial character 1. Here g is the order of G. Thus for nontrivial ir-

reducible x our theorem reduces to Schur's result.

2. Preliminary results. The proof of the inequality (1.6) depends

on three theorems of interest in themselves.

Theorem 1. If V and W are arbitrary n-square complex matrices

then

(2.1) | dx(VW) |2 = dx(VV*)dx(W*W).

This result has appeared as a research announcement [2].

Theorem 2. If A is a symmetric n-square matrix and A>D (i.e.,

Oi,>0, i, j = 1, • • ■ , n) then there exists a unique diagonal matrix

D = diag (¿i, • • • , dn), dt > 0, i = 1, • • • , n, such that DAD ts d.s.

The authors knew this theorem at the time of the announcement [4]

and shortly thereafter a constructive proof was found by Maxfield and
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Mine [ó]. Independently Sinkhorn [8], [9] proved a closely related

result.

Theorem 3. Let D be the diagonal matrix described in Theorem 2.

Moreover, assume that A = 5 where S is d.s. Then

(2.2) n¿. = i-
t=i

Proof. For any «-square matrix X let r,iX) denote the tth row

sum of X. Now A^S implies that DAD^DSD and since P^4P is

d.s. we have

n

1 = uiDAD) = uiDSD) = di 2 sudj.
3-1

Thus

n n       n

(2.3) Í^IldillZsiid,:
1-1      t=i y=i

Let

*W
,=1 \ j=i   /

where X is an arbitrary d.s. matrix. It is a well-known result of

Birkhoff [l ] that the totality ûn of «-square d.s. matrices is a convex

polyhedron with the permutation matrices as vertices. If X, YEûn,

Oiíoál, then the Holder inequality implies that

siex + (1 - e) Y) = ft ( ¿ (fixa + (i - e)yii)d)
t=i \ ,=.1 /

= ft U Ê Xiidj + (1 - 6) ¿ y,-,-^  "
1=1 \  y-i y-i        /

à flg(X) + (1 - fl)g(F).

Hence g is concave on Qn and assumes its minimum on a permutation

matrix. The value of g on any permutation matrix is just ( XI"=i di)lln.

From (2.3) we can conclude that

iàft^(g(x))nàftd:
<-i

and (2.2) follows.
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3. Proof of the Theorem. In [5] it was proved that if R is any d.s.

positive semi-definite matrix then the positive semi-definite deter-

mination of the square root of 7?, 7?1'2, is d.s. in the extended sense.

In Theorem 1 let V = R112 and W=J„, the matrix with every entry

i/n. Then Rll2Jn = Jn, 7* = /„, and thus

I dx(Jn) |2 Ú dx(R)dx(Jn).

It is known from Schur's theorems on the dx function that dx(R) 2:0.

(R is positive semi-definite.) Hence whether m(x) is 0 or not we have

(3.1) dx(R) à dx(Jn) = m(x)/n\

We can assume by continuity that A >0 in proving (1.6). By Theo-

rem 2 choose a diagonal matrix D = diag (di, ■ ■ ■ , d„), d¿ > 0,

t = l, • • • , « for which DAD = R is d.s. Then

(3.2) dx(DAD) = dx(R) ^ m(x)/nn.

But by Theorem 3

(3.3) dx(DAD) = fi d)dx(A) è dx(A).
¿-i

The inequalities (3.2) and (3.3) complete the proof.
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