
OPEN SETS OF CONSERVATIVE MATRICES1

I. DAVID BERG

In this paper we present two principal results. In Theorem 1 we

show that if r¡ denotes the open set of (conservative) matrices which

map some subspace of c of infinite deficiency isomorphically onto c

and if A denotes the closed set of matrices which sum some bounded

divergent sequence, then [r']~=A. In Theorem 2 we produce a class

of triangular matrices with the property that no triangular matrix in

a neighborhood of one of these matrices has a range, as an operator

on m, whose closure includes c.

We acknowledge valuable discussions with Dr. B. Johnson of

Exeter University, formerly of Yale University.

We first introduce some notation, most of which is quite standard.

We denote by m the Banach space of bounded sequences of com-

plex numbers, where ||x|| = sup„ | x(n) \. We denote by c the subspace

of m consisting of convergent sequences, by c0 the subspace of c con-

sisting of sequences with limit 0, and by E°° the (nonclosed) subspace

of Co consisting of sequences with only a finite number of nonzero

terms.

We denote by V the Banach algebra of conservative matrices (^4

is called conservative if xGc=>^4xGc), and by A the Banach algebra

of conservative matrices with zeros above the principal diagonal.

We denote by Ca the vector space of sequences (including un-

bounded sequences) which are summed by A, that is, transformed

into convergent sequences by A. If CjiCAm^c we say ^4GA.

When no confusion seems likely to arise we do not differentiate, for

A ET, between A as a transformation from c to c and A as a trans-

formation from m to m. In this regard we note that if A ET is con-

sidered as an operator from m to m, from c to c, or from c0 to c, the

norm is the same; indeed ||^4|| = sup» ^,- |oty|. Furthermore, we re-

call that, for A ET, if A~x exists for A as an operator on m, then A~x

exists for A as an operator on c and, hence, since A~x is a matrix,

A~XET as was shown by A. Wilansky and K. Zeller [3] and by

M. R. Parameswaran [5] or as can be seen from our Lemma 1.

We first present the following characterization of A.

Lemma 1. A.EX if and only if for e>0 and integer n there exists

xEE" such that
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1. x(l)=x(2)= • ■ • =x(w)=0,

2. ||x|| = l,

3. ¡¡¿x||<€.

Proof. Let A GA. Then there exists xEm such that, if F„x denotes

x with its first n entries replaced by 0,

1. |lim»,. (ATnx)(m)\ <l/N<e/i,

2. ||¿r„(*)||>l,
for all n.

A sequence of the form

N 2N

S(i/«)Fm„x- Y, (i/»)rm„x,
n=l n=N+l

for large enough m„, will satisfy 1,2, and 3.

The converse is clear by an easy gliding hump construction.

For details the reader is referred to [l]. This completes the proof

of Lemma 1.
Lemma 1 yields the result of Wilansky and Zeller and Parames-

waran referred to in the introduction when we observe that A GA

can have no left inverse as an operator from m to m. Hence, if

A~l exists, then A~l(c) =c.

Lemma 1 also immediately yields the easy result that A is closed.

Let A GT. Suppose there exists some C\ of infinite deficiency in c

such that if the domain of A is cut down to Ci, A is an isomorphism

(topological) from Ci onto c; i.e., if we consider A: ci—>c, A is an

isomorphism onto c. We will denote the set of such A by TK

We will show that the open set Tl is dense in A.

Lemma 2. Tl is open.

Proof, r' is clearly open, since if AET1, A : c—±c has a right in-

verse AT whose range is C\. Hence, for some neighborhood ^4Cr,

say V, BE V implies BAr(c)=c. Hence, B(ci) =c.

LEMMA3.r¡CA.

Proof. Let A Cr*. Choose an infinite linearly independent set of

vectors of the form x — y,- where x¡G c~Ci and y.Gci such that

A(xi—yi) =0. It can be easily seen (cf. §3.7 of [4]) that, by a proper

choice of scalar X,-,

CO "I 60

£ X¿(x¿ — y»)    = 0   and    Y A<(*< — yi) Eni~ c.

Theorem 1. [Tl]~= [(rO°]-=A.
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Proof. By Lemmas 2 and 3, r' = (r')° and [r']~CA. Hence we
must show that T' is dense in A (which is closed) and our theorem is

established.

Let A GA. By Lemma 1 we may choose a succession of columns of

A, ai(0), ■ • • , aj(n), • • •   as follows: Choose /(0) so that, for some

*oGP°°,
1. XoL/'(0)]=ro, where |r0| =1,

2. ||¿(x„)||<€/4.
Choose jik), k = l, 2, • • • , so that, for some xkEE°°,

1. xk[jik)]=rk, where |r*| =1,

2. ||¿x*||<(e/8)(l/2*),
3. Xkin) =0 if Xjt_i(w)9^0 for some m^n.

Now define B ET as follows: b>™ = a>'(*> 4- (e/4)5* - A(xk)/rk,

k = 0, 1, 2, • • • , where ô0 denotes the constant sequence all of whose

entries are 1 and Sk, k = 1, 2, • • • , denotes the sequence with 1 in the

fcth place and 0 elsewhere. bl = al for all other /.

It is clear that PGr since B = A+A'+A", where ^4'Gr is a com-

pact operator and A " is a submethod of the identity.

m h        e        £        e  ■£>   !

h-i<7+t+t£?-*
To see that PGr', observe that P(x*) = (e/4)x*|j(¿)]5ifc

= (e/4)r*5A, ¿ = 0,1,2, • • •. Hence, if yGc || y || = 1,

P < (r0 lim y)x0 + Y, (yij) ~ lim y)r,xA = — y.

If we denote the above pre-image of y by BTy, we see that |Pryl|

<3-4/e. Clearly, B'ic) is isomorphic to c0. It is also clear that \j(k)}

can be chosen so as to insure B'ic) being of infinite deficiency in c.

However, we note that BT, as defined above, cannot be realized by

a matrix.

This completes the proof of Theorem 1.

At this point we note that if we let r!m denote the set of A EV

such that A : m\-^>m is a (topological) isomorphism onto m from some

Wi of infinite deficiency in m, the arguments of Lemmas 2, 3 and

Theorem 1 all go through to show that Ylm is an open dense set

included in A. It is rather easy to see that rZmDr¡. To see that the

inclusion is proper, consider AEY defined by

(Ax)(n) = x(2«) - x(2« - 1).

It is clear that slight variants of the foregoing arguments lead to

other dense open sets in A; e.g., the set of A which map m onto a
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finite deficiency subspace of m, but have infinite dimensional kernel.

However, we will not weary the reader with a catalogue of essentially

similar results.

We now restrict our attention to A.

In A, Theorem 1 does not hold ; indeed, the set of matrices which

are not 1-1 on c is nowhere dense. In A, as contrasted with T, the

maximal group consists of all matrices whose range is all of c.

We are able to present a small class of matrices in AAA which are

not approximable in A by matrices whose range closure is c, hence

which are not on the boundary of the maximal group in A. We note

that, by Theorem 1, we may approximate such matrices in T by

matrices whose range is c.

J. Copping on p. 193 of [2] presented an example of an element of

Af\A. which is not on the boundary of the maximal group of A.

Copping's example belongs to the class of Nörlund matrices de-

scribed in the next lemma.

Lemma 4. Let complex numbers k, I be given, where \k\ > 1, |/| = 1.

Let A be the Nörlund matrix corresponding to (x — k)(x — l). That is:

(¡■i.i — I»

0*+l,i = — (k + I),

Oi+2,i =  kl,

aitj = 0   for all other i, j.

Let Xo be defined by

x0(l) = 1, Xo(2) = — I, x0(k) = 0 for all other k.

Let e>0 be given. Then there exists 5>0 such that for PGA,

1.
2.

B-A |<í,
x — Xo| <ô

jointly imply
y(n + 1)

— k
y(n)

<e,

where y = y(n) is defined by By = x. Observe that for small enough

e, y(£m.

Proof. It suffices to consider the case 1 = 1. Consider y defined by

By = x where PGA.

Fix n. If we express y(n-\-T) as y(n+l) = (l+r])ky(n) and if we

express y(n+2) as y(n-\-2) = k(l+p)y(n + l) = k2(l+p)(l+v)y(n),

the following equation defines p.



1965] OPEN SETS OF CONSERVATIVE MATRICES 723

n-l

Z bn+2,3y(j) + (* + ci)y(n) - [(k + 1) + c2]k(l + v)y(n)

,=1 + k2(c3 + 1)(1 + p)(l + v)y(n) = x(n + 2),

where Ci=(bn+2tn—an+2,n), C2—(0n+2,n+i—an+2in+i), Cs = {bn+2in+2—an+2,n+2).

Solving for p we get

P =
k(c3+l)(l+v)

ky(n)[(l+v)c2~(k+kri)c-¡]-l Y bn+2¡íy(j) J -f-x(w+2)-Ciy(ra)

+
k\ct+í)(l+n)y(n)

k(c3+l)(l+v)

+ R, say (provided all denominators are nonzero).

Choose Si>0, ^>0 so small that

1. Tj<min(€, I k\ —1),
2. |c3|<8i, \r,\<v imply \v/k(l+v)(c3 + l)\<2\r,\/(l + \k\).

Now choose 8, 0<5<Si, so small that

1. HF—yl||<S, ||x—x0|| <S implies \y2/yi — k\ <rj, \yi/y2 — k\<r¡,

2. (i) Iei|, I «(»+2)1, £;:í I bn+2,,-\ <«,
(ii) l/2<|y(l)|< • • • <[y(ra)|,

(iii)   1771 <r¡,
jointly imply

R<L(1—*   Y
2 \2       1 +  \k /

Let ||jB—v4||<8, ||x —Xo||<5, where 5 is chosen as above. (Note

that this guarantees that 2(i) holds.)

Suppose y(j + l) = (l+Vj)h(j)< where |íi,| <|j?|, lújún.

We now show that y(n + 2) = (l+p)&y(w + l) for some pEC such

that |p| <i).

If i7„ is such that rj/2<vn<v, then |p| < | 277/(1 -4-1 k\)\ +\r\ <|tj|.

If T¡n is such that 7?ngTl/2, then |p| <jj/2+|-R| <rj/'2+rj/2=rj. This

completes the proof of Lemma 4.

Theorem 2. Let A =BGD where B, G, PGA and

1. B and D are invertible,

2. G is the Nörlund matrix corresponding to (x — k)(x—l), where

|*| >1.
Then there is a neighborhood, V, of A in A with the following property :
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For each HE V, there exists some j"Eh such that H*f=0, i.e.,fH = 0,

where fis written as a row matrix. Equivalently ,for HE V, [Him) ]~ J) Co-

Proof. We first observe that it suffices to prove the theorem for

neighborhoods of G. For, if F is a small enough neighborhood of A,

V=BV'D where V is a neighborhood of G. But iifH = 0 for some

HE V',fB-lEh and (fB~l)F = 0 for F=BHD.
We now consider three cases. Cases 1 and 2 are well known.

Case 1. | /| < 1. This case is clear since G is now an isomorphism of

c onto fx where /=(1, kr1, k~2, • • • )Eh = c*. Hence there exists

FCA, indeed, VET, such that, for HEV, there exists gEh such

thatFf*g = 0.
Case 2. \l\ >1. This case is, similarly, clear since G is now an

isomorphism of c onto f^f^h1- for appropriate hEh-

Case 3. |/| =1. In this case Gic) is not closed in c so the above

arguments do not apply. Indeed, Gic) is dense not closed in/1 where

/= (1, hr1, k~2, • • • )• But, by Lemma 4, there exists a neighborhood

of G, FCA, such that for HE V [Pz(w)]_3)xo where x0 is as defined

in Lemma 4. Hence there exists fEh such that H*f — 0. This com-

pletes the proof of Theorem 2.

In cases 1 and 2 of Theorem 2 the conclusion holds even if neigh-

borhoods were taken in V. It is also clear that the arguments in these

cases, which are quite standard, did not depend on the degree of the

polynomial.

However, Theorem 1 tells us that in case 3 Theorem 2 is false if

neighborhoods are taken in T. While it seems likely that case 3 is

independent of the degree of the polynomial, we have not been able

to prove the equivalent theorem for higher degree polynomials.

Theorems 1 and 2 suggest the following question which we cannot

answer.

If ^4GA and A is 1-1 on c, is A on the boundary of the maximal

group of T?
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