
ON THE TOPOLOGY OF EIII AND EIV
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Introduction. In [4] we introduced the concept of the root diagram

of a compact symmetric triad. Now we consider the symmetric triad

(E%; Fi, D6Xrx) (where we represent compact Lie groups by the

standard symbols for their local structures and take £6 to be simply

connected). The corresponding compact symmetric spaces, in E. Car-

tan's notation, are EIII and EIV. We shall determine the root dia-

gram of the triad and then apply Morse theory to obtain topological

information. The natural action of F^ on EIII will be found to have

as one of its orbits the Cayley projective plane W= Fi/Bi, and the

action of D&Y,Tl on EIV will have an orbit ^XS9. An analysis of

certain spaces of paths will then establish the following theorems and

their corollaries.

Theorem A. iry(EIII,W0 = t^S1) + 7r,_i(516), 0<j<32, and

«¿Ei/Dt, W)=Tj-i(S^), 0<j<32.

Theorem B.tt;(EIV, 51X59)=7ry_i(51) + *v-i(Sia), 0<j<32, and

Ty(EI V, S9) = 7ry_i(516), 0 < j < 32.

Corollary 1. The natural inclusions IFCEIII and WCE^/D6 in-

duce isomorphisms Try(EIII) = ttj(W) = 7r3_i(57), 2 < j < 16, and

Trj(E6/Db)=irj(W), 0<j<16.

(There is a corresponding corollary to Theorem B. Most of the in-

formation that it contains also follows from Araki's computation of

fl*(EIV) [1]).

Corollary 2. iru(EIII) = (Z2)k, k = 2 or 3; im(ElU) = (Z2)k+Z,

k = 3or 4;7T2i(EIII)=Z6.

Corollary 3. tti7(EIV) = Z+(Z2)\ k = 2 or 3; tt2i(EIV)=0;

7T22(EIV) = Z6 or Z8.

Corollary 4. H*(E^/Db)=Z[xs, xn]/{xl, x217}, dim(xy)=j.

Corollary 5.

j odd

j = 0, 2, 4, 6, 26, 28, 30, 32
j-8, 10, 12, 14, 18, 20,22,24
j = 16.

/r,-(Eiii)=<

o,
z,
z+z,
z+z+z
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Other homotopy information can be deduced from Theorems A

and B. For instance, most of the groups x,(EIV), J^27, can be com-

puted modulo 2-primary components.

In what follows we regularly employ capital Italic letters for Lie

groups and the corresponding lower case German letters for their

Lie algebras. An invariant positive definite inner product on e6 is

chosen once and for all, and any subspace of u is identified with its

dual via this inner product.

1. The roots of (E6; Fit AX F). We will sketch very briefly the
computation of this root system. Let î be a fundamental system of

roots for Ee relative to a maximal torus T, and label î as in (1.1).

Define involutions J and L

(1.1)
Ml H2

ßa

—o

Pi       m

of the root system i?(iF) of £6 as follows. Let L arise from the involu-

tion of Ee whose fixed point group is Ft, so defined that 5 is a (-LA-

fundamental system (cf. [2]). Let A be the nontrivial involution of

J (hence an involution of R($)) and set J = AL. One proves (using

the theory of [2]) that / comes from an involution of E$ which de-

fines the symmetric space ElII. We denote these involutions of E*

again by J and L and continue to denote the product JL by A.

Let ii be the subspace of t on which A is the identity. / and L

restrict to the same involution — <r of it and the restricted root system

in toi is a normal a-system with Satake figure (cf. [2] for the defini-

tions) as in (1.2).

■^~

7i 72       73        74
(1-2) , ,

y i = in 1 ïa,       i — 1, • • • , 4;       7¡ = /tif211/i,    i = 3,4.

Let 8 be the negative eigenspace of — a in t¿.

Now the Siebenthal functionals on tA (cf. [4], [ó]) with linear

parts 7¿ can be shown to be 71, y2, 73, 73 + I/2, 74+8, 74+S + I/2 for

some non-negative S < 1. As in [4], we can replace / by

kd(x)(J)kd(x~x) for suitable xG5 = exp(g) and bring about that

8 = 0. Under this assumption it follows that all of the Sieben thai func-

tionals in t¿ have constant terms 0 or 1/2.

Setting 7 =741 ê, we find that the root system of the triad consists of

the functionals 7, 7 + 1/2, 27, 27 + I/2 with respective multiplicities



1965] ON THE TOPOLOGY OF EIII AND EIV 577

8, 8, 7, 1. The torus in EIII fundamental to the action of F4 (and

likewise that in EIV fundamental to the action of AXP) is a circle

5 with four singular points equally spaced about it with respective

multiplicities 15, 1, 15, 1. Denote by p and q the two singular points

of multiplicity 15.

2. The orbits of p. The singular point p can be interpreted as a

point of EIII as well as a point of EIV. In the first case we wish to

determine the P4-orbit of p and in the second the D6X P^orbit of p.

Note that the automorphism A of E& is involutive (since the Sieben-

thal functionals all have constant terms 0 or 1/2) and consequently

/and L commute. Therefore FiHtiDsXT1) is a symmetric subgroup

of P4 and of D6X T1. Thus the P4-orbit of p is a symmetric space of

P4 and the D6X P'-orbit of p is a symmetric space of DsXTK

Now by the fact that dim(EIII) =32, the dimension of the P4-orbit

of p must be 16. From the classification of symmetric spaces we obtain

(2.1) Lemma. P4n(DBX T1) =P4 and the F^-orbit ofpisW= P4/P4.

It also follows that the Z^XP'-orbit is an 59-bundle over S1. It is

not hard to show that it is actually a trivial bundle.

(2.2) Lemma. The D6XTl-orbit of p is SlXS\

(2.3) Lemma, p and q lie on the same K-orbit, K = Ft or D&X T1.

Proof. By a basic transformation as defined in [4], a singular

point of multiplicity one in ê can be translated to the origin. Then

there is an action of K which stabilizes the point of 5 corresponding

to the origin of 8 and reflects 5 through that point (just consider the

Weyl group for the symmetric space defined by restricting J to the

fixed point group of A). This action, under the inverse of our basic

transformation, becomes an action of K carrying p to q. q.e.d.

3. Proofs of Theorems A and B. Consider the space of paths

ß(EIII ; x, W) (defined as in [3]) where x is a nonsingular point of 5.

Then by §1 and (2.3) the (increasing) sequence of integers which oc-

cur as Morse indices for transversal geodesic segments in Q begins

with 0, 1, 16, 17, 32, • • • . Thus the Morse theory gives

(3.1) t/(EIII,W0 = t,_i(51 V S16 U, e17), j < 32,

where V denotes the one-point union and / is an attaching map tak-

ing the boundary of the 17-cell into S1\fS16. Theorem A will follow

from (3.1) and the following proposition.

(3.2) Proposition. There is a homotopy equivalence 51V'S16VJ'fen
~5'X516.
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As is well known, there exists an attaching map g such that S1 \/Sl"

W„ei7 = S1 XS16, so we have to show that/ is homotopic to g. We pro-

ceed by a series of lemmas.

Consider the fibration x: E$/Db—*EIII, the fiber being S1. The

natural injection Fi/Bi—>Es/Db followed by 7r gives our imbedding

of W in EIII. The following lemma is established by these facts and

the five lemma.

(3.3) Lemma, it: {E§/ Db,W)—»(EIII,VF) induces bisections in tt¡,

j>2.

(3.4) Lemma. tj(E5/D6,W) =0, 0<j<17.

Proof. For 2 <j < 17 this follows from (3.1) and (3.3). The equali-

ties iri(E6/Db)=0, 7ro(J7)=0 give in(E6/Ds„W) =0. Similarly,

TTíCEe/As) =0 and in{W) =0 imply that ir2(Ei/Db,W)=0. q.e.d.

(3.5) Corollary. Tm(Ei/D6,W)=Hn(E6/Db,W).

Proof. Both spaces are simply connected, so the result follows from

(3.4) by the relative Hurewicz theorem, q.e.d.

(3.6) Lemma. Hn(E,/Db,W)=Hn(E,/Db).

Proof. Consider the following commutative diagram where hi and

h2 are Hurewicz maps:

02
xn(E6/D6,W)-*TU(W)

H17(Et/Ds,W)—*Hit(W)
Si

Since 7ri6(IF) =7ri6(ß(I7)) =7Ti6(57) (using the root diagram of W as

given in [2] together with Morse theory) and this group is (Z2)3(cf.

[7]), and since Hw(W) = Z, it follows that /z2 = 0. h beingbijective

(3.5), it follows that 6i = 0. Finally, the equality Hn(W) =0 together

with the exact sequence in homology gives the lemma, q.e.d.

(3.7) L-EMMA.Hn(E,/Dt)=Z.

Proof. Using Si = 0 from the proof of (3.6) and the fact that

Hit(Et/Di, W)=0 ((3.4) and Hurewicz) we obtain that HU(E6/Db)

= HU(W)=Z. Similarly Hn(Ee/Db)=0. Poincaré duality gives

Hls(Ee/D¡,)=Q, H17(E«/Db) =Z. Since Ee/Db is a finite complex, the

universal coefficient theorem dualizes to give



i96j] ON THE TOPOLOGY OF EIII AND EIV 579

HX7(E6/D6) = Hom(ff17(£6/A), Z) + Ext(Hx\E6/D,), Z) = Z.

q.e.d.

(3.8) Corollary. 7r16(S2(EIII; x,W))=Z.

This last corollary contains the essential information about the

attaching map/. By [5, p. 145] there is a canonically split exact se-

quence

0 -» 7r17(Sx X S16, S1 V S16) -> *u(Sx V S16) ça Trie^1 X Sx«) -* 0.

i

Let«generateir^S1 X516, S1 V516) = Zand let ßgenerate^(S1 XS16)

= Z. Set a' = 8(a), ß' =j(ß), and note that a' is just ± the homotopy

class of the attaching map g already alluded to. Let

r:Sl V Sxe-> (Sx V S16) \uf ex7

be the inclusion. The map / defines an element [/]G7ri6(51V>S16)

which can be written ma'+nß' for suitable integers m and n. There-

fore

(3.9) «f* (a7) + nn(ß') = 0.

Now remark that the triad (£6; F4, D¡,XTl) is regular in the sense

of [4]. Thus by Theorem 2.2 of [4], the homology results of Bott and

Samelson [3] hold for ß(EIII; x, W) over the integers. In particular,

if h denotes the Hurewicz map, the spherical homology class h(r*(ß'))

is the generator of Hu(Sx\/Sli\Jfen)=Z. It is easy to see that

h(u(a')) =0, so (3.9) implies that « = 0.

(3.10) Lemma. [f]=ma'.

(3.11) Corollary. [/]=+«'.

Proof. By (3.10), iru(51V51»VJ/ei7)=Z»+Z. By (3.8), w=±l.

q.e.d.
Recalling that a generates Tn(SlXSxe, Sx\/Sx6), we can conclude

to (3.2) by standard theory. This completes the proof of Theorem A.

The proof of Theorem B is quite similar, but a little easier. One

verifies that the inclusion (EIV, 59)C(EIV, 5XX59) induces bijec-

tions in -Kj, j>2, and that 7r,-(EIV, S*) =0, 0<j<17. It follows that

MEIV, 59)=7ii7(EIV, S9).

(3.12) Lemma. 7i17(EIV,59) = Z.

Proof. We have Hn(S») = Hu(Sa) =0, and so 7i17(EIV,59)

= Hu(ElV). This last group is Zby [l, Lemma 2.4]. q.e.d.
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(3.13) Corollary. 7r«(ß(EIV; x, SlXS*))=Z.

This corollary contains all the necessary information about the

pertinent attaching map exactly as in the proof of Theorem A, so we

obtain Theorem B.

4. Proofs of the corollaries. Corollary 1 is immediate from Theo-

rem A and the equality tTj(TF) =irj-i(S1), j<22, which follows by

Morse theory from the root diagram of PF.

Corollaries 2 and 3 are proven from the exact homotopy sequence

of a pair together with Toda's computations of homotopy of spheres

[7]-
Now Corollary 1, together with the fact 5i = 0 proven in (3.6),

shows that the inclusion TFCPs/Pe induces isomorphisms if,-(IF)

= HjiE6/D6), 0 ^ j < 17. Poincaré duality and the universal coefficient

theorem then yield the group-theoretic part of Corollary 4. Let x$

generate H*(E<,/D6)=Z. The fact that x\ generates if16(P6/A) = Z

then follows from the ring structure of if*(IF) and the fact that the

isomorphism H'iW) =H'iEe/Db), 0gj<17, is induced by the inclu-

sion. If Xu generates HlliE$/Db)—Z, then Poincaré duality proves

that x|xi7 generates H33iE6/Db) =Z. The following lemma completes

the proof of Corollary 4.

(4.1) Lemma, xgxn generates H2iiEi/D6).

Proof. Let pCHHwiEs/Dn) be the fundamental class. Then by

Poincaré duality y = x8fV generates H^iE^/Di) =Z. By the natural

pairing of homology and cohomology,

2

1 = (xsxn, ß) = {xsx17, xg r\ p) = (xgXn, y).

q.e.d.
Recalling that ir: Es/D6—->EIII is a circle bundle, we can deduce

Corollary 5 in dimensions <17 from Corollary 4 by a standard (and

easy) spectral sequence argument. Poincaré duality then completes

the proof of Corollary 5.
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A NOTE ON COMPACT TRANSFORMATION GROUPS
WITH A FIXED END POINT

HSIN CHU1

Dedicated to A. D. Wallace for his 60th birthday

1. Introduction. In [2], Professor A. D. Wallace proved the follow-

ing: "Let T be a cyclic transformation group of a Peano continuum

X leaving fixed an end point, then T has another fixed point." In [4],

Professor H. C. Wang arrived at the same result by assuming that T

is compact and X is an arcwise connected Hausdorff space. In this

note, under the same assumption as Wang's, we prove that T has

countably many fixed points. In fact, we prove the following

Theorem. Let (X, T, ir) be a transformation group where X is an

arcwise connected Hausdorff space. Let A be a closed T-invariant set

which is separated from any other closed T-invariant set B, BC\A =0,

by a point. If there is such a closed set B, then T has at least two distinct

fixed points, one of them contained in A. If, furthermore, every orbit,

under T, is closed, then T has countably many fixed points.

2. Proof of the theorem. The main technique of the proof is based

on the proof used in [4] with some modification. Choose a G A and

¿G-B; connect a and b by an arc /(/), Og/^l, with 1(0) = a and 1(1)

= b. Let 51 be the set of all points which separate A and B. Then, by

our assumption, 5 is not empty. It is clear that 5 lies on the arc l(t),

as does cl(5). It is also obvious that g(S) = S and g(cl(5)) = cl(S) for
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