CONCERNING THE COMMUTATOR SUBGROUP OF A RING

W. E. BAXTER

This paper considers two independent results concerning [A, A], the commutator subgroup of an associative ring A, and generated by all elements [a, b] = ab - ba, where a and b are in A. The first of these results sharpens those of [3], while the second uses the techniques of [6] to generalize [1] and [4]. These results are stated as

THEOREM 1. Let A be a simple associative ring; then either A is a field or $[A, A]^2$, the subgroup generated by all products ab where a and b are in [A, A], is A.

THEOREM 2. Let A be an associative ring such that $[A, A]^-$, the subring generated by [A, A], is A and let U be a Lie ideal of [A, A], then either [[U, U], U] = (0) or there exists a nontrivial (two-sided) ideal, R, of A such that $R \subset U^-$.

PROOF OF THEOREM 1. Assume A is not 4-dimensional over Z, its center and a field of characteristic 2; if so, then a direct verification shows that $[A, A]^2 = A$. Let $x, y \in [A, A]$ and $a \in A$, then [x, y]a = [x, ya] + y[a, x]. Thus,

$$(xy - yx)A \subset [A, A] + [A, A]^2$$
 for all $x, y \in [A, A]$.

Now for any $b \in A$, b[x, y]a = [b, [x, y]a] + [x, y]ab and hence,

$$A(xy - yx)A \subset [A, A] + [A, A]^2$$
 for all $x, y \in [A, A]$.

Therefore either (a) [A, A], [A, A] = (0), or (b) $A = [A, A] + [A, A]^2$. (a) implies by [A] and [A] that A is a field, and (b) implies $[A, A]^2 = A$ by the use of the following lemma.

LEMMA 1 (HERSTEIN). Let A be a simple associative ring, neither a field nor 4-dimensional over its center, Z, a field of characteristic 2. Then $[A, A] \subset [A, A]^2$.

PROOF. $[A, A]^2$ is obviously a Lie ideal of A and hence by [3] either is contained in Z or contains [A, A]. We now show that $[A, A]^2 \subset Z$ leads to a contradiction. Let $a, b, c \in A$; then u = [a, b][a, c] and ua = [a, b][a, ca] are in Z. Now if $u \neq 0$, then the latter implies that $a \in Z$ and hence u = 0, which is false. Thus, for all a, b, c in A,

Presented to the Society, August 27, 1964 under the title Concerning the commutator subgroup of a simple ring; received by the editors April 10, 1964.

[a, b][a, c] = 0. An easy verification shows that this leads to $a \in \mathbb{Z}$, a contradiction. Thus the desired conclusion.

PROOF OF THEOREM 2. We assume that $[A, A]^- = A$. To prove the theorem we need the following lemma.

LEMMA 2. Let U be a Lie ideal of [A, A]. Then $I = I(U) = \{u \in U^- | ua \in U^- \text{ for all } a \in A\}$ is an ideal of A with the property that it contains every ideal of A which is a subset of U^- .

PROOF. The latter statement is obvious from the definition of I. It is also evident that I is a right ideal. Let $b \in [A, A]$, $a \in A$, and $u \in I$. Then, $b(ua) - (ua)b \in U^-$, and $bu - ub \in U^-$ which implies that $[A, A]I \subseteq I$. Thus, for all $n \ge 1$, $[A, A]^n[A, A]^nI \subseteq I$ and hence $AI \subseteq I$. So, I is an ideal of A. (The lemma also holds with U replacing U^- everywhere in the definition of I.)

We are now in a position to prove Theorem 1. Suppose $[[U, U], U] \neq (0)$; then there exists $x \in [U, U]$, $y \in U$ such that $xy - yx \neq 0$. Since $[[U, U], A] \subseteq [U, [U, A]] \subseteq U$, we have $[x, y] \in U$. Also, [x, y]a = [x, ya] + y[x, a] for all $a \in A$. By the previous remark, [x, ya] and [x, a] are in U and thus $[x, y]a \in U^-$ for all $a \in A$. Thus, $I \neq (0)$, and by Lemma 2, the theorem is proved.

This theorem can be strengthened to Theorem 3 for certain rings using an argument similar to [3] and the following lemma.

LEMMA 3 [5]. If a ring A has no nonzero right ideal, J, with $a^n = 0$ for all $a \in J$, n fixed, then A has a nonzero nilpotent (two-sided) ideal.

THEOREM 3. Let A be a ring with no nilpotent ideals and such that 2x = 0 implies x = 0. Then either U^- contains a nontrivial ideal of A or $[U, U] \subset Z$, the center of A.

PROOF. We have seen that $[x, y] \in I$ for all $x \in [U, U]$, $y \in U$. Thus, either U^- contains a nontrivial ideal of A or [x, y] = 0 for all $x \in [U, U]$, $y \in U$. If the latter holds, then for all $a \in A$, [x, [x, a]] = 0. Setting a = bc and expanding the resulting expression, we obtain 2[x, b][x, c] = 0 for all $b, c \in A$ which yields, using the hypothesis,

(1)
$$[x, b]^2 = 0$$
 for all $x \in [U, U], b \in A$.

Suppose [x, a] = 0, $x \in [U, U]$, and for all $a \in [A, A]$; then, since $[A, A]^- = A$, $x \in Z$. Thus, assume that $y = [x, b] \neq 0$ for some $b \in [A, A]$. Then, $y \in [U, U]$ and from (1) we have

(2)
$$y^2 = 0$$
 and $[y, d]^2 = 0$ for all $d \in A$.

Multiply (2) on the left by y and on the right by d and obtain $(yd)^3 = 0$. Thus yA is a right ideal satisfying identity of Lemma 3. If $yA \neq (0)$, then we have a contradiction, while yA = (0) implies (A being simple) that y=0, which also is a contradiction. Thus we have shown $[U, U] \subset Z$.

This result indeed generalizes the work of [1] and [4].

THEOREM 4. If A is simple (then $[A, A]^-=A$) and U is a proper Lie ideal of [A, A], then U is contained in the center of A except where A is of characteristic 2 and 4-dimensional over Z, a field of characteristic 2.

PROOF. Define $[U, U] = U^{(1)}$ and $U^{(n+1)} = [U^{(n)}, U^{(n)}]$ for all $n \ge 1$. Then, since A is simple, it has no nonzero nilpotent ideals. Thus, except in characteristic 2, $[U, U] \subset Z$ or $U^- = A$. If the former, then Theorems 7 and 9 of [4], in the case not characteristic 3, and Lemma 3 of [1] in this case implies $U \subset Z$. Now, by these same results, if $U^{(2)} \subset Z$, then $U \subset Z$. Hence $\{U^{(2)}\}^- = A$. Thus, by Lemma 9 of [2] we have $[U^{(2)}, A] = [A, A]$, which contradicts U being proper. Lemma 1 of [1] yields the result when A is of characteristic 2.

The author wishes to express his thanks to the referee, I. N. Herstein, for his suggestions.

REFERENCES

- 1. W. E. Baxter, Lie simplicity of a special class of associative rings, Proc. Amer. Math. Soc. 7 (1956), 855-863.
- 2. ——, Lie simplicity of a special class of associative rings. II, Trans. Amer. Math. Soc. 87 (1958), 63-75.
- 3. I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math. 77 (1955), 279-285.
- 4. ——, The Lie ring of a simple associative ring, Duke Math. J. 22 (1955), 471-476.
 - 5. ——, Topics in ring theory, Univ. of Chicago, Chicago, Ill., 1965.
- I. I. Zuev, Lie ideals of an associative ring, Uspehi Mat. Nauk 18 (1963), no. 1 (109), 155-158.

University of Delaware