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A doubly stochastic matrix is usually defined as an «X« matrix

which has nonnegative elements and row and column sums one. If

the restriction on the nonnegativity of the elements is ignored, a

definition equivalent to the row-column sum condition can be given

which does not mention the elements at all. Let u be the «-dimen-

sional column vector whose components are all equal to n~x'2. (We

have made \\u\\ — 1 for convenience.) An »X« matrix T will have row

and column sums one if and only if Tu= T*u = u. In this paper we

shall use the term doubly stochastic to describe the members of this

larger class of matrices. We label this class 3D«.

In [2] the author gave a characterization of this matrix class in

terms of a certain factoring problem:

Theorem 1. Let 1 ©0 denote the n-dimensional vector whose first com-

ponent equals one and whose remaining components all equal zero and

set

<?n = {T G sn:» I T(l © 0) = u, T'u = 1 © 0},

9TE„ denoting the nXn complex matrices. Then

£>u =  <Pn<Pn , <P» CP» =   1  © STCn-l,

and, in fact, if 9C„, ̂„çgil,, are such that £>„ = 9Cn<yn, *y„9:n = 1 ©9TC„_i,

then there exists a complex number p^O such that 9Cnçip(pn, ^„Çp-1^.

The inclusion may be proper. (A prime on a matrix denotes transpose.

A prime on a set of matrices denotes the collection of transposes in that

set.)

It is the intent of this paper to establish results of a similar nature

which are not dependent upon the finiteness of dimension. First,

then, we extend the notion of doubly stochastic to the infinite-

dimensional case.

Let 3C be an infinite-dimensional complex Hubert space and fix

«G3C, ||m|| =1. The members of

ax, = {r g [ae] | Tu = r*u = u}

are said to be doubly stochastic on 3C.

Presented to the Society, January 24, 1964; received by the editors March 16,

1964.

692



FACTOR SETS FOR DOUBLY STOCHASTIC OPERATORS      693

The following theorem characterizes this generalized 35« in terms of

a certain set of mappings in [C©3C, 3C], where Cis the complex plane.

Theorem 2. Let

<P = {T E [C © 3C, 3C] | F(l © 0) = u, T*u = 1 © U}.

Then 35U = (P(PX, G'A<P = Ic® [3C], wAere Tc is ¿Ae identity function on C.

In fact,if XQ[C®30,30] and ^[ac, G©3C] are such that 35tt=9Cy,
"XJ 9C = Tc © [3C], /Aera there is a complex number p^O such that 9CÇp(P,

'yCp-icp4. If, in addition, y = Xa, then \p\ =1. Tra any event, the in-

clusions may be proper. (For any collection of mappings, X, Xa is

used to denote the set of adjoints of the members of X.)

The first part of Theorem 2 is a consequence of the following two

lemmas:

Lemma 1. Tc© [ae] = {TE [C®30]\ F(1©0) = F*(1©0) = 1©0}.

Proof. Let TE [C©3C] and pick hE30. There exist pEC, h'E30
suchthat T(0®h)=p®h'. Then if F*(1©0) = 1©0,

(r(o © h), i © o) = (o © h, r*(i © o)) = (o © h, i © o) = o,

while, at the same time,

(F(0 © h), 1 © 0) = 0" © h', 1 © 0) = p.

Thus, p = 0, showing that F(0 © h) = 0 © h'.

Define 7\: 30—>30 by the rule Tih = h'. Clearly, Pi is linear. Further-

more,

IMI = 11*11 = IIo© ¿II = ||r(o©*)|| ^||r||||oe*|| HMIII4
showing that Fi is bounded with || Fi|| ^|| F||. Thus FXG [3C].

If F(1©0) = 1©0, then, for any XGC, hE30,

T(\ © h) = T(\ © 0) + F(0 © h) = XF(1 © 0) + (0 © Tih)

= X(l © 0) + (0 © Tih) = \®Tih= (Ic © Fi)(X © h),

showing that T = Ic®Ti.

Lemma 2. If T0E<P is nonsingular, then

35„ = To<?A = (PFo*;

To*(P = (PAT0 = Ic © [3C].

Proof. TE£>»=>Tf1Tu = l®0 and (F0-1F)*(1©0) = F*F*-1(1©0)

=m=»Fo-1FG(P4=*FGFo(Pa. Thus 35„ÇF0(PA. Similarly, 35uC(pT*.

SGTc©[3C]=i.ro*-1S(l©0)=M   and    (Fo*-1S)*m = S*F0-1íí = 1©0
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=*Po*-1.SG(P^.SGro*(P. Thus Ice[3C]çP0*(P. Similarly, Ic@[x]

Q(PATo.
The opposite inclusions are clear.

Lemma 2 and the obvious inclusions, (P(?AQS)U, 6>A<PQIC® [x],

give the first part of the theorem.

To demonstrate the remainder of Theorem 2 we analyze the one-

dimensional member of £)„, J. It will be shown, among other things,

that J is unique.

Since JE&u, Ju = u, and since the range of J is one-dimensional,

u must generate that range. Then Jx=\xu for each xG3C, where X*

is a complex number dependent upon x. But

(Jx, u) = (Xxu, u) = Xxiu, u) = Xx,

and

(Jx, u) = (x, J*u) = (x, u)

showing that, in fact, Jx=(x, u)u. In particular, the mapping / is

unique.

The following computation shows that J is self adjoint.

iJx, y) = ((x, u)u, y) = (x, «)(«, y),

{J*x, y) = (x, Jy) = (x, (y, m)î<) = (x, «)(w, y),

for all x, yG3C. Furthermore, from

(PPr, y) = (F(x, w)w, y) = (x, «)(«, y)

and

iJTx, y) = (x, F*/*y) = (x, F*/y) = (x, T*(y, «)«) = (x, «)(«, y),

it is clear that TJ=JT= J for all FG£>u.

The next part of Theorem 2 will follow from Lemma 3:

Lemma 3. Peí 9C and y be as in Theorem 2. Then

X[IC © 0X] = /X,

[Zc©0x]F= F7,

for all XE?C,YEy. Ojc î\s the zero operator in [x].

Proof. Let Yx=ßx@hx, xEH. Then

X[IC © Ojc] Fx = X[IC © O^Km* © fe) = ßxX{\ © 0),

showing that XJ/cffiO^] Y is one dimensional. Since X[lc®0fâ]Y
EXicy3C)cy = £>l=£>u, it follows that X[lc®0sc]Y=J. Then, since

YXEIc® [3C], FZ = 7c©Pi for some TXE [x\. Then
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JX = X[lc © 0X] YX = X[lc © OjcH/c © Ti] = X[lc © 0œ].

Similarly, F/ = [Jc © Ojc ] F.
The proof in Theorem 2 may now be completed. Pick XE 9C, FG<y

and let X*u=px@kx. With the aid of Lemma 3, [lc@0^o\X*u

= X*Ju = X*u,i.e.,

Px © kx = [Jc © Ox](px © ¿x) = pz © 0.

Thus X*u=px®0 = px(l®0). In the same way,  Yu=pY(l®0),

where py may depend upon Y.

Since XFGS)„,

(Z*m, F«) = (u, XYu) = (u, u) = 1.

But

(X*m, F«) = (pz(1 © 0), pY(l © 0)) = pxpr

and, thus, pxpr = l. By letting X vary over X and holding Y fixed,

we conclude that px = p, a constant for all X. Then py = p_1 for all F.

Of course, p^O.

Since X*M = p(l©0) and (XY)*E^>i = ^>u,

F*(l © 0) = p~xY*X*u - p"1«.

Similarly, X(1©0) =pXFw=p«. It follows that XGp(P, FGp_1(P4,
i.e., that 9CQ>(P, ̂ O.p-x(PA. If it happens that ty = 9CA, then p=p-1

and we must have | p| = 1.

The inclusions may be proper. Suppose <P contains three distinct

nonsingular elements P, F2, and F3. Define X = (?— { Tx}. By Lemma

2, T2XA = S>U-{T2T?}. But, since T,^T,, TrxT2Tx*^Ti* and it

follows that r3-ir2rfG9C'i = <y. Whence TtiT^TiT?) - T2TX*EX%

Similarly, F2*9C= {/c© [x.]} - { TfTi) and, since Tf^TfTiEX,
it follows that r3*(r3*-ir2*r1) = r2*r1Giy9c. Thus ax.=9c<y and
yX = Ic® [SQ.], even though 9CC<P and <yC(Px properly.
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