CELLULAR SUBCOMPLEXES OF PIECEWISE-LINEAR MANIFOLDS^{1,2}

RICHARD E. CHANDLER

Let K be a finite cellular subcomplex of a piecewise-linear (combinatorial) n-manifold, M^n , and let N be a regular neighborhood of K in M^n .

LEMMA 1. K is contractible.

PROOF. That K is homologically trivial is an easy application of Čech homology theory. We prove $\pi_1(K) = 1$. There is an n-cell B such that $K \subset B^0 \subset B \subset N$. There is a retraction $\phi \colon N \longrightarrow K$. Let $\psi = \phi \mid B$. Then $\psi_{\mathfrak{k}} \colon \pi_1(B) \longrightarrow \pi_1(K)$ is an epimorphism. Since $\pi_1(B) = 1$ we have $\pi_1(K) = 1$. The proof is completed by an appeal to the Hurewicz theorem.

LEMMA 2. ∂N is a homotopy (n-1)-sphere, $n \ge 3$.

PROOF. Since K is contractible, so is N. Thus, if x_0 is any point of N^0 , $\pi_1(N-x_0)=1$. $N-x_0$ is homeomorphic to N-K and there is a retraction of N-K onto ∂N . Hence, $1=\pi_1(N-x_0)=\pi_1(N-K)=\pi_1(\partial N)$.

By giving a duality argument similar to that found in [3, Proposition I.1, p. 152] we can prove that ∂N is an homology (n-1)-sphere. Consequently, the proof is complete.

Let us denote the n-dimensional generalized Poincaré conjecture by PC(n) (see [4], [5], and [7] for proofs) and let Cell(n) denote the conjecture: N is an n-cell. Then we have the following theorems, the proof of the first of which is essentially that given for Proposition 1 of [2].

THEOREM 1. PC(n-1) + PC(n) implies Cell(n).

THEOREM 2. Cell(n) + PC(n) implies PC(n-1), $n \ge 5$.

PROOF. Let Σ^{n-1} be a piecewise-linear closed (n-1)-manifold which is a homotopy (n-1)-sphere. Let B be an (n-1)-simplex in Σ and let $F = \Sigma - B^0$. F is a contractible (n-1)-manifold whose boundary is

Presented to the Society, January 26, 1964; received by the editors February 19, 1964 and, in revised form, June 11, 1964.

¹ Research partially supported by an N.S.F. Cooperative Graduate Fellowship.

² The material in this paper constitutes a portion of the author's doctoral dissertation, directed by Professor M. L. Curtis and submitted to the Florida State University.

an (n-2)-sphere. All we need demonstrate is that F is an (n-1)-cell. Since F is contractible, $F \times I$ is also. Hence, $2(F \times I)$ is a homotopy n-sphere so, by hypothesis, $2(F \times I)$ is an n-sphere.

Now $2(F \times I) - \partial(F \times I) = D_1 \cup D_2$ where D_i is $(F \times I)^0$. D_1 is contractible and 1-connected at infinity and dimension of $D_1 = n \ge 5$. Consequently, $D_1 = E^n$ [6]. Thus, $\overline{D}_2 = F \times I$ is cellular in $2(F \times I) = S^n$ and the regular neighborhood of $F \times I$ in $2(F \times I)$ is, by hypothesis, an n-cell. However, this regular neighborhood is homeomorphic to $F \times I$. Hence, $F \times I = I^n$ and $\partial(F \times I) = 2F = S^{n-1}$. By the generalized Schoenflies theorem [1], F is an (n-1)-cell.

REFERENCES

- 1. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 2. M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819-820.
- 3. M. L. Curtis and R. L. Wilder, The existence of certain types of manifolds, Trans. Amer. Math. Soc. 91 (1959), 152-160.
- 4. S. Smale, The generalized Poincaré conjecture in dimensions greater than four, Ann. of Math. 74 (1961), 391-406.
- 5. J. Stallings, Polyhedral homotopy spheres, Bull. Amer. Math. Soc. 66 (1960), 485-488.
- 6. ——, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos, Soc. 58 (1962), 481-488.
- 7. E. C. Zeeman, The generalized Poincaré conjecture, Bull. Amer. Math. Soc. 67 (1961), 270.

FLORIDA STATE UNIVERSITY AND DUKE UNIVERSITY