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1. In a previous paper [l] a coprime chain was defined to be an

increasing sequence {ai, • ■ • , ak\ of integers greater than 1 which

contains exactly one multiple of each prime equal to or less than ak.

We let s(«),«> 1, denote the number of coprime chains with larg-

est member n. For convenience we define s(l) = 1.

In this paper we will obtain a partial recursion formula for s(n) and

an asymptotic formula for log s(n). A table of values of s(n), «g 113,

is also provided.

In the following p will designate a prime and pi will designate the

tth prime.

2. Lemma 1. A = [ai, • ■ ■ , ak = pi9i2\ is a coprime chain iff

(i) A'= {ai, • ■ • , ak-i) is a coprime chain,

(ii) pi-i is the largest prime in A'.

Proof. If A = {ai, • ■ ■ ,ak = pi7£2\ is a coprime chain, then

(ii) pi-i is in A (and therefore is the largest prime in A') since by

Bertrand's Postulate 2p,_i>p,-, and

(i) If A' is not a coprime chain, then there is a prime p ^ a*_i divid-

ing no member of A'. Thus p divides (and therefore is equal to) ak

since A is a coprime chain, but this is impossible since ak~i <ak.

To prove the converse we note that if A is not a coprime chain, then

pi divides some member of A' and therefore pi-i<ak-i/2. But again

by Bertrand's Postulate there is a prime between ak-i/2 and ak

occurring in A' which contradicts (ii).

A direct result of this lemma is:

Theorem 2. s(p¡) = EEL s(n), i^2.

Theorem 3. s(p) = 22»<p s(n) (n not prime).

Proof. The assertion holds for p = 2. Now let q and p be successive

primes with q<p. If s(q) = 2»<fl s(n) (n not prime), then

s(p) — s(q) +   £   s(n) = £ s(n)    (n not prime)
Q<n<p n<p
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by Theorem 2 and the theorem follows by induction.

3. The above result indicates marked irregularities in sin), how-

ever, we can approximate log sin) asymptotically.

Theorem 4. log 5(«)~\/w-

Proof. Every coprime chain A in) can be constructed in the follow-

ing manner. Let qit i = l, ■ ■ ■ , k, qi>q¡ for i<j be those primes less

than y/n and not dividing «. Choose any multiple miqi of qi so that

»H<Zi = « and (mi, «) = 1. If q2\mi let m2 = 0. If q2\mi, choose any

multiple m2q2 of q2 so that m2q2 =■ « and (wi2, nmiqi) = 1. This process is

continued by choosing w,- = 0 if g¿ | my for some/= 1, • • • ,¿—1, other-

wise choosing any multiple JMjg, of g< so that «í¿g,^«, («,-, «migi • • •

mi-iqi-i) = 1. The set [miqi, • • • , m^} — {o} can then be extended

to a coprime chain by appending « and those primes p between Vw

and « which do not divide « or any m¡, and reordering if necessary.

This extension is unique since any multiple of a prime p, other than p

itself, must either be larger than «, not relatively prime to «, or not

relatively prime to all m,<7> Therefore

logs(«) ^ log =   X) log«-   £ logf= {l + o(l)}V»-
3>SV» psVn

To obtain a lower bound for logs(«), coprime chains are con-

structed by choosing the nt¡ in the following manner. Let mi be 1 or

any prime satisfying \f n <mi^n I qi, mi\n. There are at least

win/qi)— iriy/n) — 1 choices for mi since there is at most one prime

in the given range which divides «. Let m2 be 1 or any prime satisfying

y/n<m2^n/q2, m2\nmi. There are at least ir(«/g2)— iri^/n)— 2

choices for m2. This process is continued until all multiples «z¿g,-

have been chosen. In general there are at least

ir I — J — 7t(\/») — i ¡è tr{ — ) — «•(V») - {ir(y/n) — ir(ç.)}

= *" ( — ) ~ 2vWn) + iriqi)

choices for m{. The set {miqi, • • • , mkqk\ is then extended to a co-

prime chain as previously indicated. If 7r(«/gt) — 2iri\/n) +ir(g,-) ^0,

then m,- is chosen to be 1 ; hence the above construction is valid.

In the remainder of the proof we assume e given such that 0<«

<l/2. Define Ô by »'/i = 2(l-«)V», 1/log «<5<l/2. Then using
certain results from [2 ] we have



808 R. C. ENTRINGER [August

logí(») à      E     log U(—) - MVn) + 7t(P)\
pSn^.p^n \     \ P / J

^   E iog
17ápání

=   E log-

4V» P   }

P log
n      log n — 3     log p

E log 2n
p]n

PSI" »
/.log —

+  E log {l - (:
PS»" v V

provided that

(1)

4 V» \ p        n)
) —log—> + o(V»)

/ n       p)log n — 3     log />

4V» />
+- > 0   for p g n\

n      log n — 3     log />
¿log —

Now for sufficiently large n

E iog- i +
ps»" ,       »

/.log —

o(l)}(^-n^ + o(Vn),

= {1 + o(l)}2(1 - «)(1 - OV» è (1 - e)V«;

hence it remains only to show (1) and

4V» P

P
- E log {i - (-

pS»* { \l<

\   P »)
-) — log— > = o(V»
!»/  » ¿J

).
Pan»        v dog » — 3      log />>

Noting that p log («//>) and ¿2(1 — log «/log />) are increasing func-

tions of p for p^ V» and « sufficiently large we have

4V» P  \ n 4V» » /        loew\
/,log- + Wl--M

\        log ¿/dog n — 3     log p

P  \ »; J Í log
p      log « — 3 p

4V» / 1 \
=-«s(l - 5) log m + n2i ( 1-)

logw-3 V        5/

/ 2 log» \
= 4(1 - 5)(1 - e)5n-^_— - 1 + e)

Vlog w — 3 /

^ (1 - e) w(2 + e2 - 1 + e) = (1 - «*)n

for all sufficiently large n. Hence (1) holds and
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Elog{1_(_i^L._JL)Alog»l
pán»        I        \logM-3     logp/ n p)

which completes the proof.

■n        Vn
à Z 3 log « ̂  8-log e

Pin» log «

5(»)

2
3
4

5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
30
31
32
33
34
35
36
37
38
39

2
6
4

1
21

7
16
7
1

9
18
11
35
3

15
30

10

19

20

32

85

s(n)

4.11

5.65

3.83

4.73

3.06

3.68

3.25

3.80

3.79

s(n)

3.08

161 2.72

40
41

42
43
44

45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

15
12

19

3

154
11
62

31

5
129

19
90

54

54
44

57
207

7

62

147
8

212

214

260

521

818

820

1189

1406

1415

s(n)

2.84

3.29

3.65

i(n)

2.78

2.64

3.03

3.01

3.24

3.63
80
37

73

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

113

391
9

25
228

117

4
447
142
292
91

3

715
175
392
213
826
23

65
312
47

19

166
24

269

23

31

540
76

2005

2375

3351

5698

6122

6141

6600

6623

7270

s(n)

3.61

3.81

3.73

3.32

3.78

4.16

4.28

5.16

5.69
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4. The table on the preceding page lists the value of s(«) for all

«gll3. All entries for sin) were computed individually and checked

by means of Theorem 2.
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ON THE CONTENT OF POLYNOMIALS

FRED KRAKOWSKI

1. Introduction. The content C(/) of a polynomial / with coeffi-

cients in the ring R of integers of some algebraic number field K is

the ideal in R generated by the set of coefficients of/. This notion plays

an important part in the classical theory of algebraic numbers.

Answering a question posed to the author by S. K. Stein, we show in

the present note that content, as a function on R[x] with values in

the set J of ideals of R, is characterized by the following three condi-

tions:

(1) C(/) depends only on the set of coefficients of /;

(2) if / is a constant polynomial, say fix)=a, aER, then C(/)

= (a), where (a) denotes the principal ideal generated by a ;

(3) C(/-g) = C(/)-C(g) (Theorem of Gauss-Kronecker, see [l, p.

105]).

2. Characterization of content. Denote by [f] the set of nonzero

coefficients oí fER[x] and call/, g equivalent, of /~g, if [f] = [g]. A

polynomial is said to be primitive if its coefficients are rational in-

tegers and if the g.c.d. of its coefficients is 1.

Lemma. Let S be a set of polynomials with coefficients in R and sup-

pose it satisfies:

(1) ÍES;
(2) iffESandf~g, then gES;
(3) iff'i&S, then f ES and gES.

Then S contains all primitive polynomials.
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