THE NUMBER OF COPRIME CHAINS WITH
LARGEST MEMBER 7

R. C. ENTRINGER

1. In a previous paper [1] a coprime chain was defined to be an
increasing sequence 4, - - -, ak} of integers greater than 1 which
contains exactly one multiple of each prime equal to or less than a.

We let s(n), n>1, denote the number of coprime chains with larg-
est member #. For convenience we define s(1) =1.

In this paper we will obtain a partial recursion formula for s(z) and
an asymptotic formula for log s(z). A table of values of s(n), n <113,
is also provided.

In the following p will designate a prime and p; will designate the
ith prime.

2. LemMa 1. A={ay, - - -, ax=p:#2} is a coprime chain iff
1) 4’'= {al, « -, @i} is a coprime chain,
(1) pi-1 1s the largest prime in A’.

Proor. If 4 = {al, <., ak=p.-7é2} is a coprime chain, then

(ii) pi—1isin A (and therefore is the largest prime in 4’) since by
Bertrand’s Postulate 2p;_1> p;, and

(i) If A’ is not a coprime chain, then there is a prime p £ a;_; divid-
ing no member of A’. Thus p divides (and therefore is equal to) a:
since A is a coprime chain, but this is impossible since ai—1 <ax.

To prove the converse we note that if 4 is not a coprime chain, then
p.: divides some member of A’ and therefore p;; <ax—1/2. But again
by Bertrand’s Postulate there is a prime between a@x—1/2 and ax
occurring in A’ which contradicts (ii).

A direct result of this lemma is:

THEOREM 2. s(p;) = D 2 s(n), 122
THEOREM 3. 5(p) = D _n<p S(n) (n not prime).

Proor. The assertion holds for p =2. Now let g and p be successive
primes with ¢<p. If s(g) = > n<q 5(n) (n not prime), then

) = s(@ + X stn)= X s(n) (nnot prime)

g<n<lp n<p
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by Theorem 2 and the theorem follows by induction.

3. The above result indicates marked irregularities in s(n), how-
ever, we can approximate log s(n) asymptotically.

THEOREM 4. log s(n) ~+/n.

Proor. Every coprime chain 4 (#) can be constructed in the follow-
ing manner. Let g;, =1, - - -, k, ¢;>¢; for 1<j be those primes less
than 4/z and not dividing #. Choose any multiple mg: of ¢; so that
mqa<n and (m;, n)=1. If q2|m1 let me=0. If gofmy, choose any
multiple m.g, of ¢; so that mag. <n and (m,, nmigi) =1. This process is
continued by choosing m;=0if ¢; I m;forsomej=1, - - - ,1—1, other-
wise choosing any multiple mg; of ¢; so that m,q;<n, (m;, nmq: - -
m;qi-1) =1. The set {mlql, Cee L mg) — {0} can then be extended
to a coprime chain by appending # and those primes p between v/n
and # which do not divide » or any m;, and reordering if necessary.
This extension is unique since any multiple of a prime p, other than p
itself, must either be larger than #, not relatively prime to #, or not
relatively prime to all m.q;. Therefore

log s(n) = log [1] < X logn— X logp={1+o1)}vn.
psinl p psVn psVn

To obtain a lower bound for log s(n), coprime chains are con-
structed by choosing the m; in the following manner. Let m, be 1 or
any prime satisfying ~/n<mi<n/q, min. There are at least
w(n/q) —w(+/n) —1 choices for m, since there is at most one prime
in the given range which divides n. Let m; be 1 or any prime satisfying
Vn<meEn/qs, molnmy. There are at least w(n/q)—7n(+/n)—2
choices for m,. This process is continued until all multiples mg;
have been chosen. In general there are at least

n n
. (;) —a/m) =iz (;) — 2(/n) = {x(v/n) = 7(g)}
n
= (%) - 2etwm) + x(e)
choices for m,. The set {mqy, - - -, migi} is then extended to a co-

prime chain as previously indicated. If w(n/¢.) —27(v/n)+(g:) £0,
then m, is chosen to be 1; hence the above construction is valid.

In the remainder of the proof we assume e given such that 0<e
<1/2. Define & by n?/6=2(1—¢€)/n, 1/log n<8<1/2. Then using
certain results from [2] we have
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logs(r) = X log {w(%) — 2xyn) + ()}

psSn”p#n
4/n
= Z log - 4 4 —21032”
175psnd n logn —3 logp oln
log —
n
= 2 log
pand n
p log —
?

4/n P \? n}
1 1- — —log—
+ ,,és o8 { (logn -3 log p) n %8 /4 +olvn)

provided that
) n 4/n P

n _logn—3+logp
plog;—

>0 for p < nd.

Now for sufficiently large »

2 log
é

psn

nd

—= {1+ o(l)}(; - n‘) + o(v/n),
log —
p log p
= {14+ o)}2(1 —8)(1 — vz = (1 — */n;
hence it remains only to show (1) and

- Bog fi- (- 2 ) Log 2} = atvm.

pan ogn —3 - logp/ n

n

Noting that p log (#/p) and p2(1 —log n/log p) are increasing func-
tions of p for p < +/7 and » sufficiently large we have

4~/n P n o 4~/n n 2( logn)
(logn—S logp)Plog - _3plogp+p !

p logn log p
4/n 1
S ———n¥(1 —6) logn 4 n? (1 - —)
logn — 3 o
21
=4(1——6)(1—e)8n( i —1+e>
logn — 3

S(l—-9gn2+e—14+e=01—e)n
for all sufficiently large #. Hence (1) holds and
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4/n 2\ ? n
> log {1—-( - )—log ——}
pand logn —3 logp/ n ?
n
= E3loge§8 v loge
psnd log n
which completes the proof.
evr evn evr
n s(n) ” s(n) ” s(n)
s(n) s(n) s(n)

2 1 4.11 40 6 77 | 391

3 1 5.65 41 212 | 2.84 78 9

4 1 42 2 79 2005 3.61

5 1 3.83 43 214 3.29 80 25

6 1 44 15 81 | 228

7 3 4.73 45 12 82 | 117

8 1 46 19 83 2375 3.81

9 3 47 260 | 3.65 84 4

10 2 48 3 85 | 447

11 9 3.06 49 | 154 86 | 142

12 1 50 11 87 | 292

13 10 | 3.68 51 62 88| 91

14 2 52 31 89 3351 | 3.73
15 4 53 521 2.78 90 3

16 3 54 5 91 | 715

17 19 3.25 55 | 129 92 | 175

18 1 56 19 93 | 392

19 20 3.80 57 90 94 | 213

20 2 58| 54 95 | 826
21 6 59 818 2.64 9 | 23
22 4 60 2 97 5698 | 3.32
23 32 3.79 61 820 | 3.03 98 65
24 1 62| 54 99 | 312
25 21 63 44 100 | 47
26 7 64 57 101 6122 3.78
27 16 65 | 207 102 19
28 7 66 7 103 6141 4.16
30 1 67 1189 3.01 104 | 166
31 85 3.08 68 62 105 24
32 9 69 | 147 106 | 269
33 18 70 8 107 6600 | 4.28
34 11 71 1406 | 3.24 108 23
35| 35 72 9 109 6623 5.16
36 3 73 1415 3.63 110 31

37 161 2.72 74 80 111 | 540

38 15 75 37 112 76
39| 30 76| 713 113 7270 | 5.69
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4. The table on the preceding page lists the value of s(n) for all
n =113. All entries for s(n) were computed individually and checked
by means of Theorem 2.
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Un1versiTY oF NEw MEXICO

ON THE CONTENT OF POLYNOMIALS
FRED KRAKOWSKI

1. Introduction. The content C(f) of a polynomial f with coeffi-
cients in the ring R of integers of some algebraic number field K is
the ideal in R generated by the set of coefficients of f. This notion plays
an important part in the classical theory of algebraic numbers.
Answering a question posed to the author by S. K. Stein, we show in
the present note that content, as a function on R[x] with values in
the set J of ideals of R, is characterized by the following three condi-
tions:

(1) C(f) depends only on the set of coefficients of f;

(2) if f is a constant polynomial, say f(x) =@, a ER, then C(f)
=(a), where (e) denotes the principal ideal generated by a;

3) C(f-g)=C(f)-C(g) (Theorem of Gauss-Kronecker, see [1, p.
105)).

2. Characterization of content. Denote by [f] the set of nonzero
coefficients of fER[x] and call f, g equivalent, of f~g, if [f]=[¢g]. A
polynomial is said to be primitive if its coefficients are rational in-
tegers and if the g.c.d. of its coefficients is 1.

LEMMA. Let S be a set of polynomials with coefficients in R and sup-
pose it satisfies:

1 1eS;

(2) if fES and f~g, then gES;

3) if f-gES, then fES and gES.
Then S contains all primitive polynomials.
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