
FOURIER COSINE TRANSFORMS WHOSE REAL PARTS
ARE NON-NEGATIVE IN A STRIP

D. V. WIDDER1

1. Introduction. In a recent note [l] we obtained the Poisson

integral representation of every function u(x, y) which is positive

and harmonic in a strip, — 1 <y < 1. We here make use of this result

to characterize those Fourier cosine transforms

J o
cos(* + iy)t <j>(t) it

whose real parts are positive and integrable on — oo <x< oo for each

y in — \<y < 1. The characterizing condition on <£(i) is that <f>(t) cosh /

(defined for t <0 so as to be even) should be real and positive definite.

As an example, we have the classical equations

1 r°°
•—-=   I     cos zr e_r dr. z = x + iy,
Z'+l        Jo

u(x, y) = Re—-• =-—-> 0,     I y I   < 1,
z2 + 1      (*2 - y2 + l)2 + 4x2y2 '    '

/CO

u(x,y)dx=r, \y\  < 1,

(2) «¡HH cosh r = — I    eirt d   U(t) -\-tan-1 —  .
2 J-K L * 2j

Here U(t) is zero for t <0 and unity for i>0, so that the integrator

function in (2) is increasing and bounded. Thus e_|r| cosh r is positive

definite in confirmation of the theory. Equation (1) can be checked

directly or will follow from Corollary 2 below.

An analogous result for the sine-transform is also obtained.

2. Positive integrable harmonic functions. In [l] the Poisson inte-

gral representation of functions positive and harmonic in a strip was

obtained. If such functions are also integrable over the whole doubly-

infinite lines of the strip they also have a simple Fourier integral

representation, which we now obtain. We use H and L to denote the

classes of harmonic and integrable (on the whole x-axis) functions,
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respectively. Let us state Theorem 4 of [l], altered in notation only.

Set

ir
cos — y

Q(*. y) = T
4

(3)

;r Try
cosh — x + sin —

2 2

1    ¿
=-tan-1

ir  ¿a;

TV
sin-h c"/2

2

cos
iry

Theorem A. A necessary and sufficient condition that u(x, y) should

be non-negative and harmonic in the strip -l<y<l is that

(4)

u(x, y) = [Ae"'* + Be'"'2] sin — +  I    Q(x - t, y) da(t)

+ f Q(* - t,-y) dß®,      -Ky<l,

where A^O, B^O, a(t) and ß(t) are nondecreasing.

To obtain our basic result we observe that Q(x, y) is itself a posi-

tive definite function of x. This results from the fact that it is the

Fourier transform of a positive function,

1   f°°      sinh(l-y)«

sinh 21
dt,        -1 < y < 1.(5)        Q(*,y)=-f

See p. 36 of [2].

Theorem 1. A necessary and sufficient condition that u(x, y)ÇzH,

GL, èO/or -í<y<listhat

/°°      sinh (1 — y)r Ç
e--. uo       g(0dr +

_«,           sinn 2r «/ _

where g(f) and h(r) are positive definite.

sinh (1 + y)r

sinh 2r
A(r)¿r,

To prove this it will be sufficient to show that under the added

condition

(7) J  «(*, y)dx < «>,        — 1 < y < 1
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the representations (4) and (6) are identical. Since every term of (4)

is nonnegative it is clear that the above inequality cannot hold unless

A = B = 0. From (3) we see that

J    Q{x,y)dx = —j-,        -Ky<l.

Hence by Fubini's theorem (7) can then hold if and only if the non-

decreasing functions a and ß are also bounded. Then (7) takes the

explicit form

u(x, y) dx =- I    da(t) +- I    dß(t) < °°.
-00 2       «/_» 2       «/-oo

Now substituting (5) in (4) we obtain

1   /•"           C            sinh(l-y)r
u(x,y) - — I    da(f) I    e'**-0'-—dr

2vJ -*> J _oo sinh 2r

1   C" C

¿IT J-a J _,

sinh (1 + y)r
«#(0  |    e«-«*-—dr.

sinh 2r

In view of the boundedness of a and ß we may again apply Fubini's

theorem to invert the order of integration, obtaining (6) with

«W =7- (  <ritTda(t),

Kr)=— f <r«'dß{t).
2w J -~.

By Bochner's theorem [3] g and h are positive definite. This concludes

the proof.

Corollary 1. If to the conditions of the theorem is added that

u(x, —y) =u(x, y) they become necessary and sufficient that

/"      cosh yr
e*-—g(r)dr,       -Ky<l,

__,      cosh r

where g(r) is positive definite.

For, from (6)

u(x,y) + u(x, -y)       Ç'«(*,»---Jufay) + «(*> —y)      r°° ■   coshyr g(r) + h(r)
e™*-dr.

«       cosh r 2
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The proof is concluded by an obvious change in notation.

A simple change of variable shows that if the strip — Ky<l of

Theorem 1 is replaced by 0<y<c, then (6) becomes

/"       sinh(c — y)r CM      sinh yr
e<"-;       ^  g(.r)dr +       e^-—L.h(r)dr,

-a,           sinh cr J-n     smb. cr

where g and h are positive definite.

3. The Fourier cosine transform. The precise statement of the re-

sult of §1 follows.

Theorem 2. The conditions

A. u(x,y) EH, èO,e£(-°° < * < °°), -1 < y < 1,
B. u(~x,y) = u(x, -y) = u(x,y)

are necessary and sufficient that

/% 00

u(x, y) = Re  J     cos (x + iy)t 4>{t) dt,       -1 < y < 1,

where <¡>{\t\ ) cosh t is real and positive definite.

Under Conditions A and B, Corollary 1 shows that

Xa       cosh yr
e™-—g(r)dr,       -Ky<l,

_„       cosh r

for some positive definite function g(r). Denote the real and imagin-

ary parts of g by gi and g2 respectively. Then gi is even and positive

definite; g2 is odd. By B, u(x, y) is even in x, so that

/"            cosh yr
cos xr-■— gi(r) ir

^o            cosh r

(10) /•-
= Re   I     cos (x + iy)r <t>(r) dr,

Jo

<t>(\r\) = 2gi(r)/coshr,        — <*> < r < a>.

This proves the sufficiency of Conditions A and B. The necessity fol-

lows easily.

Corollary 2. Under the Conditions A and B

I    u(x, y)dx = t<¡>(0),        -1 < y < 1.
•^-00

Write equation (10) as
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/M       sinh(l — y)r                   ¡"°      sinh(l + y)r
e™-——-Sl(r) dr +  I    e"-——-gl(r) dr.

_o           sinh 2r                       J _oo          sinh 2r

where

«iW=— f  e-^daif).
¿IT J _oo

Now apply equation (7) with a=ß:

/OO *» 00

u{x,y) dx =   I     da(t) = 2irgi(0) = ir<*>(0).
-00 «'-OO

In the example of §1, <j>(0) = 1, so that equation (1) is established.

4. The Fourier sine-transform. A companion result to Theorem 2

is the following.

Theorem 3. The conditions

A. u(x,y)EH,EL(-<*> <x< »), -1 <y < 1,
B. u{x,y) ^0,0<y< 1,

C. u(-x,y) = - u(x, -y) = u(x,y)

are necessary and sufficient that

/» 00

(11) u(x, y) = Im   I     sin (x + ty)< <¡>(t) dt,        -1 < y < 1,
Jo

where <j>(t) sinh / tí real positive definite (<j> being odd).

We first prove the necessity. Assume (11) with

/CO

e-Urda(r),
-00

where a(r) is nondecreasing and bounded. Then

1 ¡"° sinh yt
(12) «(*, y) = —        cos *i —— g(t) dt

2 J _oo sinh Í

T   ra sin 7ry
(13) =— I      ---da(r).

2 J_oo cosh(ac — r)w + cos 7ry

From (13) we may now verify Conditions A and B; from (12), Condi-

tion C.

Conversely, from (9) with c = l, we have for 0<y<l

(""      sinh(l — y)r i"°      sinhyr
(14) «(*,y)=        e<"-. , g(r) dr +        e™—^-h(r)dr,

•/_oo sinh r «/_„,      sinh r
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where g and h are positive definite. Assuming u(x, y) odd in y, we

see that u(x, 0)=0 (A and C). We now show that the first of the

integrals (14) is identically zero. From (13) it is clear that it defines a

non-negative harmonic function v(x, y) in 0<y<2. The second of

the integrals (14) is harmonic in -Ky<l and vanishes for y = 0.

From equation (14), v(x, 0) =0. But v(x, 1) =0. Hence we may apply

the uniqueness result, Corollary 2.2 of [l], to conclude that

v(x, y) = [Aen + Be-"] sin rey,        A ^ 0, B ^ 0.

Since

/00 /% 00v(x, y)dx ^  I    u[x, y) dx < <x>,       0 < y < 1
-10 " — 00

it follows by Condition A that A = B = 0, so that v vanishes identi-

cally.

Now writing h = hi+ih2 we have

/°°            sinh yr
cos xr —-hi(r) dr

^oo            sinh r

/» 00

= Im   I     sin(a: + iy)r <t>(r) dr,
Jo

<t>(r) = - <f>(-r) = 2Ai(r)/sinh r,       0 <r < 00.

This concludes the proof. As an example we may take

T sin xy T
u(x> y) =-= — Im tanh ir(x + iy)

2   cosh TX + cos ry      2

sin(a; + iy)t
—-—dt.

7 0 sinh tJ a

Here <f>(t) = 1/sinh /, and the function 1 is real and positive definite.

5. Positive integrable harmonic functions in a half plane. In [4]

we showed that u(x, y) is harmonic, ^0 and integrable in x (— » <x

< 00 ) for 0 <y < «> if and only if

(15) u(x, y)=  f  e^l-VM dr,
J -v,

where \¡/{r) is positive definite. Under these conditions u{x, y) satis-

fies the conditions of Theorem 1 in the strip 0<y<e for every c>0.

Thus u(x, y) has the two representations (9) and (15). It is perhaps
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useful to record the relations between the functions g, h, and \¡/. By

use of the identity

sinh yr     sinh(c — y)r

sinh er sinh cr

we see at once that

g(r) = *(r),       h(r) = r*"#Cr),

so that g is independent of c, and A is an exponential multiple of g.

As one would expect the first integral (9) tends to the integral (15)

as c—»+ », the second approaches zero.
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