FOURIER COSINE TRANSFORMS WHOSE REAL PARTS
ARE NON-NEGATIVE IN A STRIP

D. V. WIDDER!

1. Introduction. In a recent note [1] we obtained the Poisson
integral representation of every function u(x, ) which is positive
and harmonic in a strip, —1 <y <1. We here make use of this result
to characterize those Fourier cosine transforms

f ) cos(x + iy)t ¢(¢) dt

whose real parts are positive and integrable on — o <x <.« for each
yin —1<y<1. The characterizing condition on ¢(f) is that ¢(¢) cosh ¢
(defined for £ <0 so as to be even) should be real and positive definite.
As an example, we have the classical equations

1 -]
= coszre " d z=ux-+1
1 fo 7y + 1y,
2 —yr 41
u(x, y) = Re = > 0, |y| <1,
241 (22— 92+ 1)? + daty?
[ swmpia=m, I3l <1,
1 > 1 t
2) el coshr = ——f et d[U(t) + —tan™! —-:l
2J_, T 2

Here U(®) is zero for £ <0 and unity for ¢£>0, so that the integrator
function in (2) is increasing and bounded. Thus e~!"! cosh r is positive
definite in confirmation of the theory. Equation (1) can be checked
directly or will follow from Corollary 2 below.

An analogous result for the sine-transform is also obtained.

2. Positive integrable harmonic functions. In [1] the Poisson inte-
gral representation of functions positive and harmonic in a strip was
obtained. If such functions are also integrable over the whole doubly-
infinite lines of the strip they also have a simple Fourier integral
representation, which we now obtain. We use H and L to denote the
classes of harmonic and integrable (on the whole x-axis) functions,
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respectively. Let us state Theorem 4 of [1], altered in notation only.
Set

v

cos —y
1 2
Q(x) y) =
4 h T x + sin k4
cosh — —
2 2
3 xy
in — xz[2
1 4 sin 3 + ¢
=— — tan™! .
x dx Ty

cos —
2

THEOREM A. A necessary and sufficient condition that u(x, y) should
be non-negative and harmonic in the strip —1<y<1 is that

u(s,) = (e + Berer]sin 2+ [ 0e = 1,3) dat)
@ . -
+[oe-t-nao, -1<y<t,

where A20, B20, a(t) and B(t) are nondecreasing.

To obtain our basic result we observe that Q(x, y) is itself a posi-
tive definite function of x. This results from the fact that it is the
Fourier transform of a positive function,

smh 1- y)t
) Q(x,y)——f M TN —1<y<t.
sinh 2¢
See p. 36 of [2].

THEOREM 1. A necessary and sufficient condition that u(x, y)EH,
EL, 20 for —1<y<1 is that

@ st = [ o T a4 [T REE

————h(r)d
sinh 2r (r)dr,
where g(r) and h(r) are positive definite.

To prove this it will be sufficient to show that under the added
condition

) f u(x, y) dz < o, -1<y<1
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the representations (4) and (6) are identical. Since every term of (4)
is nonnegative it is clear that the above inequality cannot hold unless
A=B=0. From (3) we see that

Q(x,y) dx = ——243’» —1<y<1.

Hence by Fubini’'s theorem (7) can then hold if and only if the non-
decreasing functions « and $ are also bounded. Then (7) takes the
explicit form

© 1
f (s, y) di =

—2 f_:da(t) + iz” f_:dﬂ(t) < w.

Now substituting (5) in (4) we obtain
h(l1-—
o) = o [ oty [ oo LI,

sinh 2r

— f ds() f ity SRR A F )7

sinh 2r

In view of the boundedness of o and 8 we may again apply Fubini’s
theorem to invert the order of integration, obtaining (6) with

1 ©
60) = o [ e daty,

1 )
M) = o f it dB (i),

By Bochner’s theorem [3] g and % are positive definite. This concludes
the proof.

COROLLARY 1. If to the conditions of the theorem is added that
u(x, —y) =u(x, y) they become necessary and sufficient that

©  coshyr
® = [ = Zna  —1<y<y,

where g(r) is positive definite.
For, from (6)

u(x, ) + u(x —y) _ f“cm coshyr g(r) + k(r) ir
2 cosh r 2

u(x,y) =
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The proof is concluded by an obvious change in notation.
A simple change of variable shows that if the strip —1<y<1 of
Theorem 1 is replaced by 0 <y<c¢, then (6) becomes

O ) = [ o T g [

sinh ¢r

nyr

h(r)dr,

where g and k are positive definite.

3. The Fourier cosine transform. The precise statement of the re-
sult of §1 follows.

THEOREM 2. The conditions
A u(z,y) EH,20,EL(—» <r< ), -1 <y<1,
B. 4(—2,9) = u(x, —y) = u(x,y)

are necessary and sufficient that

u(x,y) = Re f cos (x + iy)t o(t) dt, -1<y<1,
0

where ¢(l tI) cosh ¢ is real and positive definite.
Under Conditions A and B, Corollary 1 shows that

© cosh yr
u(x,y) = f ewer coshy g(r) dr, -1<y<],

for some positive definite function g(r). Denote the real and imagin-
ary parts of g by g1 and g, respectively. Then g, is even and positive
definite; g, is odd. By B, u(x, y) is even in x, so that

d cosh
u(x,y) = f cos xr Sl gi(r) dr
—o cosh r

(10) = Re f ® cos (x + iy)r ¢(r) dr,

¢(| rl) = 2g1(r)/cosh r, —o <r< o,

This proves the sufficiency of Conditions A and B. The necessity fol-
lows easily.

COROLLARY 2. Under the Conditions A and B

f Qu(x, y)dx = x¢(0), -1<y<1,

—0

Write equation (10) as
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sinh(1 — sinh(1 + y)r
= eior —— 70 glor— T 7V
() f sinh 2f g () dr+ f sinh 2r 81(r) dr.

where

1 ]
o) = — f e da(f).
27 J

Now apply equation (7) with a=8:

f ", y) dz = f " da() = 20g:(0) = 16(0).

In the example of §1, $(0) =1, so that equation (1) is established.

4. The Fourier sine-transform. A companion result to Theorem 2
is the following.

THEOREM 3. The conditions

A u(x,9)EHEL(—w <z< »),—-1<y< 1
B. u(x,y)=20,0<y<1,

C. u(—x,9) = — u(x, —y) = u(z,y)

are necessary and sufficient that
(11)  u%(x,y) =Im f sin (x + iy)t ¢(¢) dt, -1<y<],
0

where ¢(t) sinh ¢ is real positive definite (¢ being odd).
We first prove the necessity. Assume (11) with

8 sinhi = g0) [ v dat),
where a(r) is nondecreasing and bounded. Then

(12) @) 1 f‘“ ) sinh y2
u(x,y) = — cos %
»J 2J_, sinh ¢

g(t) a

T [ sin 7y

(13)

da(r).

2 —w cosh(x — r)w 4 cos xy

From (13) we may now verify Conditions A and B; from (12), Condi-
tion C.

Conversely, from (9) with ¢=1, we have for 0< y<1

(14) u(x,y) = f“eizr M

sinh 7

g(r) dr + f “' h(r) dr,
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where g and & are positive definite. Assuming %(x, y) odd in y, we
see that #(x, 0)=0 (A and C). We now show that the first of the
integrals (14) is identically zero. From (13) it is clear that it defines a
non-negative harmonic function v(x, y) in 0<y<2. The second of
the integrals (14) is harmonic in —1<y<1 and vanishes for y=0.
From equation (14), v(x, 0) =0. But v(x, 1) =0. Hence we may apply
the uniqueness result, Corollary 2.2 of [1], to conclude that

v(x,y) = [4e™ + Be~**] sin 7y, A=20,B=0.

Since
f v(x,y)dng u(x,y) dx < , 0<y<1

it follows by Condition A that 4 =B =0, so that v vanishes identi-
cally.
Now writing & =Hh;-+1k; we have
sinh

u(x, y) = f COS 27 — yrhl(r) dr
— sinh r

= Im f sin(x + iy)r ¢(r) dr,
0
¢(r) = — ¢(—7) = 2hy(r)/sinh 7, 0<r< o,

This concludes the proof. As an example we may take

) T sin y I tanh x(z + iy)
u(x,y) = — = —Imta x4+
¢ 2 coshmz + cosmy 2 i %

- Im f” sin(x + zy)t
sinh ¢

Here ¢(t) =1/sinh ¢, and the function 1 is real and positive definite.

5. Positive integrable harmonic functions in a half plane. In [4]
we showed that %(x, y) is harmonic, 20 and integrable in x (— o <x
< o) for 0 <y< = if and only if

(19 u(s,) = [ ey ar,

where Y(r) is positive definite. Under these conditions %(x, y) satis-
fies the conditions of Theorem 1 in the strip 0 <y <c for every ¢>0.
Thus #(x, y) has the two representations (9) and (15). It is perhaps
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useful to record the relations between the functions g, #, and . By
use of the identity

evirl = g—clrl sinh bl + SInh(c - y)f

sinh cr sinh cr

we see at once that
g0) =¥(n), k) = eeiY(),

so that g is independent of ¢, and & is an exponential multiple of g.
As one would expect the first integral (9) tends to the integral (15)
as c—- «, the second approaches zero.
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