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1. Introduction. In this note, we discuss a problem which was sug-

gested by Serre [12]. Throughout the paper, G denotes a compact,

connected, simply connected, simple Lie group. It is a well-known

result of Hopf that the real cohomology of G is isomorphic to that

of a space X(G), which is a product of odd dimensional spheres :

î

X(G) = 5" X • • • X S»>,       I = rank G,       £ m = dim G = n.
i-X

Serre defines a prime p to be regular for G if there exists a map

/: X(G)—*G such that/*: Hi(X(G) ; Zp)-+Hi(G; Zp) is an isomorphism

for t^O. In the same paper [12], it is shown that

Theorem 1.1 (Serre). If p^, (dim G/rank G) — 1, then p is regular

for G. If, in addition, G is a classical group, the inequality is necessary

for the regularity of p.

We prove here the necessity of the inequality p ^ (dim G/rank G)

— 1 for regularity of p for exceptional Lie groups G and thereby

obtain

Theorem 1.2. A prime p is regular for G if and only if

p^(dim G/rank G)-l.

The proof of 1.2, which uses the classification of compact, simple

Lie groups, depends heavily on a method of Clark [6] for finding

nonzero Steenrod reduced powers.

In his paper [3], Borel calls attention to Serre's work on the prob-

lem of comparing G and X(G). He, in fact, states that the above in-

equality is not necessary in the case of G exceptional because of a

result of Toda stating that 7rio(G2) =Z3. This error was later corrected

by Bott and Samelson [5]. In §3, we give a simple proof of the Bott-

Samelson result that 7Tio(G2) =0 using some calculations of Kervaire

[lO] and a result stated by Harris [7], the proof of which is con-

tained in a forthcoming paper of this author [ll].

The author is indebted to Professor Allan Clark for calling to his

attention the methods used here, and to Professor Bruno Harris for

his advice during the preparation of the paper. This result is con-
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tained in the author's doctoral dissertation and was presented to the

American Mathematical Society in February 1964 (Abstract 609-7,

Notices Amer. Math. Soc. 11 (1964), 205-207).

2. Proof of Theorem 1.2. In view of Serre's result (1.1), it suffices

to show that for exceptional G, if p<(dim G/rank G) — 1, then p is

irregular for G.

Since spheres have no torsion, if G has /»-torsion, then p is irregular

for G. Using the definition of regularity, together with the J. H. C.

Whitehead theorem (see [12, p. 276]), we find that if p is regular for

G, then the /»-primary component of t3(G) is isomorphic with the

direct sum of the /»-primary components of 7rJ(5n<), i = l, ■ • • , I.

Also, using the naturality of the reduced powers of Steenrod, if there

is a nonzero power P{¡: H'(G; Zp)—*H'+2i(-p-1>(G; ZP) then p is irregu-

lar for G ; for the reduced powers are trivial for products of spheres.

Hence we may state the

Lemma 2.1. Each of the following implies that p is irregular for

G: (a) G has p-torsion, (b) ir,(G) and ©{_i x,(5Bi) do not have iso-

morphic p-primary components, (c) there is a nonzero Pj,: H'(G; Zp)

-KrP+2i(p-i)(G; Zp) for some tél.

In table (2.2), we record for each exceptional group G, those primes

p for which G has /»-torsion (see Borel [2 ]), together with the numbers

dim G, (dim G/rank G) — 1, and the sequences («i, • • • , «i) of dimen-

sions of spheres in X(G) (see Borel and Chevalley [4]).

We proceed to list, for each exceptional group G, those primes

p<(dim G/rank G) —1, such that G has no /»-torsion, pj¿3 if G = G3.

For such p we note the pairs (ms, mk) satisfying the hypotheses of

Clark's theorem (2.3). We then record the corresponding nonzero Pp.

(2.2)

dim G
/dimG\

Vrank G/
/»-torsion («i, , ni)

Gi
F<
E,
Ei
E*

14
52
78

133
248

6
12

12

18
30

2

2,3
2,3
2,3

2,3,5

(3,11)
(3,11,15,23)
(3,9,11,15,17,23)
(3,11,15,19,23,27,35)
(3,15,23,27,35,39,47,59)

Bott and Samelson  [5] have shown that 7rio(Gj) has 3-primary
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component zero. Since 7Tio(5,X511)3 = Z3 (see [12, p. 285]), by (2.1b),

3 is irregular for Gi. (See also Proposition 3.1.) From the table (2.2)

of p-torsion, and (2.1a), together with the preceding remark, it fol-

lows that 2 and 3 are irregular for all exceptional groups, and that 5

is irregular for Et.

Now we show that for exceptional G, if p < (dim G/rank G) — 1,

p5¿2, 3 and p^5 if G = Eb, there exists a nonzero reduced power

Pp: H'(G; Zp)-+H1+t{<*-»(G; Zv). This result will complete the proof
of (1.2) using (2.1c).

The following is a rewording of a result due to Clark [6]. We state

and prove it in a form which is convenient for our purposes.

Theorem 2.3 (Clark). Let G be as in (1.2). Let H*(G; R) be an

exterior algebra on generators xn¡, i = \, • • ■ , I, deg ¡cBj = »¿ = 2»í¿—1.

i/p is prime and G has no p-torsion and if there exists k, íék^l, such

that (i) mkféO (mod p), (ii) mk>p, (Hi) the set {mi, • • • , mt} contains

exactly one element m¡ such that m¡ = (\ —p) mod mk, and m¡<mk, then

PfXimj—l = X2m¡¡—1.

Proof of (2.3). Since G has no /»-torsion, the classifying space B

of G has the property that H*(B; Zv) is a polynomial algebra on gen-

erators y2mj, t= 1, • • • , I, which suspend to the generators x2ro,—i- Let

mk he as in the statement of the theorem. Let I be the ideal of

H*(B; Zp) generated by the y2mi, i^k. Then either PP(I)EI or

PlOXtl.
We shall now see that the first of these is impossible. Since mk>p,

we may write mk = a+bp, b>0, 0<a<p. As a special case of the

Adem relations, [l], P%P^y2mk = P?yimk = yLv Since P¿(7) EI, we

have Pl(T)EI, for a\PaP = (Pp)a, and a!^0 (mod p). Hence, if

P^y^EI, we have ylmkEI, which is a contradiction. Therefore

P?y2mt6/. Thus, P^y2mk = qyT2mk+s, q^O, qEZp, s EL Taking de-
grees we get 2mk+2bp(p — \)=2rmk. Hence mk(r—\)=bp(p — \).

Since mk>bp, r<p, and since p is prime, and r— 1 divides bp(p — 1),

we see that r —1 divides b(p — 1). Hence mk=0 (mod p), a contradic-

tion. Thus Pl(I) (£/.
If all generators of I were mapped into J by Pj, we would have

P\,(I) EL For an element of I can be written as a sum of elements of

the form M,y2mi, UiEH*(B; Zv). But P\ preserves sums and Pv(uiy2mx)

=Pp(u,)yimi+eUiPpy2m., e= ±1, which is in / if P¿(y2m¡)GL There-

fore Pp(yimt) El for some i^k, that is Ppyimi = qyT2mk+s, q^O, sEL

Taking degrees, we get 2mi+2(p — 1) = (r)(2mk), i.e., w, = (l— p)

+rmk. Hence m,= (\—p) mod m*. By hypothesis, there is only one
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such mi, called m¡. Moreover, m¡<mk. We show that r — 1. If r>l,

then (r — l)mk>p, hence (r — l)mk+mk—m¡>p, or rmk — m¡>p>p

— 1, i.e., mj<(l—p)+rmk contrary to the fact that w, = (l—/»)

+rmk. Hence m}=(l—p)+mk, and P^ysm^îy^+i. Since s is de-

composable, it is mapped into zero by the suspension, and by the

naturality we obtain P^a^-i = x2mk_v We may assume q = 1 by suit-

ably choosing the generators x(. This proves (2.3).

We now apply (2.3) to complete the proof of (1.2). First note from

(2.2) that for G2, Fit P6, E-,, P8, the sequences (mi, • • • , m¡), mi

= (»<+l)/2 are, respectively, (2.6), (2, 6, 8, 12), (2, 5, 6, 8, 9, 12),
(2, 6, 8, 10, 12, 14, 18), and (2, 8, 12, 14, 18, 20, 24, 30).

G p (m¡, mk) nonzero Pp

Gi 5 (2, 6) P\ xt  = »n

Ft 5 (8, 12) p\ zu = xa

7 (2, 8) p) x3  = «15

(6, 12) Pn »ii = Xi%

11 (2, 12) PU  = xn

Et 5 (5, 9) p\ «9  = «n

(8, 12) P\ xn = «23

7 (2, 8) Pj x,   = Xu

(6,  12) P7 »a = «23

11 (2, 12) Pn«3   = «23

Ei 5 (8, 12) P\ xu = «23

(10, 14) P\ xn = Xi-,

(14, 18) P\ Xi-, = «38

7 (12,   18) P\ «23   =   «36

H (8,  18) PÎi»16 =  «36

13 (2,  14) Pi3«3    =  «27

(6, 18) Pis«ll = «85

17 (2, 18) PÎ7«3  = «35
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G p (ntj, mk) nonzero Pp

ES 7 (14, 20) PÎ «27  =   »39

(18,  24) P\ «36  =   »47

(24, 30) P] »47 =  »69

H (8,   18) PÎl«16  =   «36

(14, 24) PÍi«27  =  «47

(20, 30) PÎi«39  -  «59

13 (8, 20) Pi3»15 =  «39

(12,  24) PÎ3«23   =   «47

(18, 30) Pi3«36 =  *69

17 (8,  24) P,7»l5  =   »47

(14,  30) Pn«27  =   «59

19 (2, 20) PÎ9»3    =  »39

(12, 30) PÎ9»23 =  »59

23 (2,  24) P\3X3    =  »47

(8, 30) P23»15  =   *69

29 (2, 30) Ploxz  = »69

In each case, the fact that (m¡, mk) satisfies the hypotheses of

Theorem 2.3 is easily checked. Thus (1.2) is established.

3. Computation of xio(G2). Finally we prove the following proposi-

tion, whose significance was noted in the introduction.

Proposition 3.1. xi0(G2)=0.

Proof. In Harris's paper [7], it is stated that the homotopy exact

sequence of the fibration G2—»Spin 8—»Spin/G2 is split when tensored

with Q3, the ring of rational numbers whose denominators are powers

of 3. The splitting is given by the map

q: Spin 8/G2 -> Spin 8, q(rG2) = ra(r)-\   t Q Spin 8,

a the automorphism of order 3 of Spin 8 having G2 as fixed point set.
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(A description of the inclusion G2 CSpin 8 and a proof of this splitting

are contained in a forthcoming paper of the author [ll].)

Let £:Spin 8—»Spin 8/G2 be the projection. It is known that

Spin 8/G2 is homeomorphic with S'XS' (see [9, II, p. 93]). In the

proof of the above splitting, it was shown that if we identify

7r,-(Spin 8/G2) « tt3(57) 0 *j(S7),
then

p*q*(a, j8) = (a + ß, 2ß - a),        a,ßE *v(S7).

We record the following results on homotopy groups of spheres

and orthogonal groups:

iTn+i(Sn) = 0, n è 6,

7T„+3(5") = Z24,       «^5,

T8.+2(50(8i)) = Z24 © Z8,       í ^ 1.

The first two can be found in Hu [8, pp. 329-331], and the last is due

to Kervaire [l0].

Take « = 7, 5 = 1, and observe that the exact homotopy sequence

of the above fibering

d j* p*
-► r«(.S* X S7) -* tio(G2) -» irio(Spin 8) U ^(S7 X S7) -» ■ • •

reduces to the exact sequence

d j* p*
0 —* 7Tio(G2) —> Z24 © Z8 —» Zu ©  Z24

since 7rn(Spin 8) ~irn(SO(S)), »à2.

If 7Tio(G2) has an element x of order 3, then j*(x) j^O and has order

3, therefore generates the 3-component of 7Tio(Spin 8)»Z24©Zg

= Zj ©Z8 ffiZ8. Since p*/* = 0, all elements of order 3 are in ker p*. Let

ctEirxo(S7) ~Z2i be an element of order 3, a^O. Then q*(ct, 0)

Cirio(Spin 8) has order 3 or is zero. In any case, 0 = p*q*(a, 0)

= («, — a), hence a = 0, a contradiction. Hence 7Tio(G2)3 = 0.

Finally, from Serre [12, Corollary 2, p. 289], we know that

irio(G2) is finite. From the fact that the homotopy sequence of

G2—»Spin 8—»Spin 8/G2 is split upon tensoring with Q3, we obtain

(irxo(G2) © irxo(S7 X S7)) ® Q3 « 7n0(Spin 8) ® Qz.

Therefore
(tw(Gi) ® Qz) © Z8 © Z8 « Z8 © Z8.

Hence 7ti0(G2) ®Q3 = 0, i.e., tio(G2) has no elements of finite order ¿¿3.

We have seen that iri0(G2)3 = 0, hence 3.1 is proved.
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