A NOTE ON MEANS OF ENTIRE FUNCTIONS

T. V. LAKSHMINARASIMHAN

Let f(z) denote an entire function of order ρ and lower order λ , $0 \le \lambda$, $\rho \le \infty$, and let us define

$$\sigma_{\delta}(r) = \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\delta} d\theta \right)^{1/\delta}, \quad 0 < \delta < \infty,$$

$$\sigma_{\delta,\kappa}(r) = r^{-\kappa-1} \int_{0}^{r} u^{\kappa} \sigma_{\delta}(u) du, \quad 0 < \delta < \infty, \quad -1 < \kappa < \infty.$$

For the above two functions, we first prove Theorem 1 below by a method different from that in [4]. Theorem 2 which follows is a simple deduction from Theorem 1.

We require the following lemmas:

LEMMA 1 ([2, THEOREM 148]). If ϕ , ψ and ϕ'/ψ' are positive increasing functions of r and if $\phi(0) = \psi(0) = 0$, then ϕ/ψ is an increasing function for r > 0.

LEMMA 2 ([3, LEMMA 2]).

$$\lim_{r\to\infty}\frac{\log\log\sigma_{\delta,\kappa}(r)}{\log r}=\frac{\rho}{\lambda},\qquad 0\leq\lambda,\qquad \rho\leq\infty.$$

LEMMA 3. (i) $r^{s+1}\sigma_{\delta}(r)$ is a convex function of $r^{s+1}\sigma_{\delta,\kappa}(r)$; (ii) $\sigma_{\delta}(r)$ / $\sigma_{\delta,\kappa}(r)$ is an increasing function of r.

PROOF. Rahman [3, Lemma 3] has proved Lemma 3 (i), with a negligible difference in the definitions of $\sigma_{\delta}(r)$ and $\sigma_{\delta,\kappa}(r)$ and also assuming $\kappa \ge 0$ instead of $\kappa > -1$. As in his proof, our definitions easily lead to

$$\frac{d\{r^{\kappa+1}\sigma_{\delta}(r)\}}{d\{r^{\kappa+1}\sigma_{\delta,\kappa}(r)\}} = \kappa + 1 + \frac{d\{\log\sigma_{\delta}(r)\}}{d\{\log r\}}.$$

Now, $\log \sigma_{\delta}(r)$ being known to be a convex function of $\log r$ [1], the right-hand member is an increasing function. Hence the left-hand member too is an increasing function, which proves (i) of Lemma 3.

Lastly, by Lemma 1, (i) implies that $r^{s+1}\sigma_{\delta}(r)/r^{s+1}\sigma_{\delta,\kappa}(r)$ is an increasing function, i.e., (i) implies (ii).

Received by the editors January 28, 1963 and, in revised form, November 16, 1964.

THEOREM 1. For an entire function f(z) of order ρ , and lower order λ , $0 \le \lambda$, $\rho \le \infty$,

$$\lim_{r\to\infty} \sup_{\text{inf}} \left\{ \frac{\sigma_{\delta}(r)}{\sigma_{\delta,s}(r)} \right\}^{1/\log r} = \frac{e^{\rho}}{e^{\lambda}}.$$

PROOF. It is readily seen from our definitions that

(1)
$$\frac{d}{dr}\left[(\kappa+1)\log r + \log \sigma_{\delta,\kappa}(r)\right] = \frac{1}{r} \frac{\sigma_{\delta}(r)}{\sigma_{\delta,\kappa}(r)}$$

so that

$$(\kappa+1)\log\frac{r}{r_0}+\log\sigma_{\delta,\kappa}(r)-\log\sigma_{\delta,\kappa}(r_0)=\int_{r_0}^r\frac{\sigma_{\delta}(u)}{\sigma_{\delta,\kappa}(u)}\cdot\frac{du}{u},$$

or

(2)
$$\log \sigma_{\delta,\kappa}(r) = \log \sigma_{\delta,\kappa}(r_0) + \int_{r_0}^{r} \frac{m_{\delta,\kappa}(u)}{u} du$$

where

(3)
$$m_{\delta,\kappa}(u) = \left[\frac{\sigma_{\delta}(u)}{\sigma_{\delta,\kappa}(u)} - (\kappa+1)\right]$$

increases as u increases, in virtue of Lemma 3 (ii), and is continuous. Thus for $r > r_0$, (2) gives

$$\log \sigma_{\delta,\kappa}(r) - \log \sigma_{\delta,\kappa}(r_0) < m_{\delta,\kappa}(r) [\log r - \log r_0].$$

Using Lemma 2, we get from this

(4)
$$\rho \leq \limsup_{r \to \infty} \frac{\log m_{\delta,\kappa}(r)}{\log r}, \qquad \lambda \leq \liminf_{r \to \infty} \frac{\log m_{\delta,\kappa}(r)}{\log r}.$$

Again

$$\log \sigma_{\delta,\kappa}(2r) - \log \sigma_{\delta,\kappa}(r_0) \ge \int_{a}^{2r} \frac{m_{\delta,\kappa}(u)}{u} du \ge m_{\delta,\kappa}(r) \log 2,$$

which gives

(5)
$$\rho \geq \limsup_{r \to \infty} \frac{\log m_{\delta,\kappa}(r)}{\log r}, \qquad \lambda \geq \liminf_{r \to \infty} \frac{\log m_{\delta,\kappa}(r)}{\log r}.$$

From (4) and (5) we get

(6)
$$\lim_{r\to\infty}\sup_{\text{inf}}\frac{\log m_{\delta,\kappa}(r)}{\log r}=\frac{\rho}{\lambda}.$$

The theorem now follows from (3) and (6).

THEOREM 2. For an entire function f(z) of order ρ and lower order λ , $0 \le \lambda$, $\rho < \infty$,

$$\log \sigma_{\delta,s}(r) \sim \log \sigma_{\delta}(r), \quad r \to \infty$$

REFERENCES

- 1. G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc. (2) 14 (1915), 269-277.
- 2. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press, Cambridge, 1952.
- 3. Q. I. Rahman, On means of entire functions, Quart. J. Math. Oxford Ser. (2) 7 (1956), 192-195.
- 4. ——, On means of entire functions. II, Proc. Amer. Math. Soc. 9 (1958), 748-750.

MADRAS CHRISTIAN COLLEGE, MADRAS, INDIA