ON BERGMAN'S KERNEL FUNCTION FOR SOME UNIFORMLY ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

G. G. WEILL¹

1. We present here a generalization of the theory of Bergman's kernel function for uniformly elliptic partial differential equations of the divergence type

$$\mathfrak{M}u \equiv \partial/\partial x_k \left(a_{ik}\partial u/\partial x_i\right) = 0.$$

It is known that for regular open sets Ω in \mathbb{R}^n the expression

$$M_{\Omega}(u) = \int_{\Omega} a_{ik} \, \partial u / \partial x_i \, \partial u / \partial x_k \, dX$$

is a natural norm on the space of regular solutions of $\mathfrak{M}u=0$ vanishing at a point $x_0 \in \Omega$. It is proved that for E compact in Ω , $x \in E$

$$|u(x)|^2 \leq K(E)M_{\Omega}(u).$$

The existence of Bergman's kernel K(x, y) and the convergence of its expansion in terms of a complete orthonormal set of functions follows at once. We prove the boundedness of K(x, y) on compact subsets of Ω . A sharp value for K(E) is found to be $\sup_{E} K(x, x)$.

2. We consider partial differential equations of the type

$$\mathfrak{M}u \equiv \partial/\partial x_k (a_{ik}\partial u/\partial x_i) = 0, \quad i, k = 1, \dots, n,$$

where the coefficients $a_{ik} \in C^{(1,\lambda)}$ in a regular region $\Omega \subset \mathbb{R}^n$. Moreover, \mathfrak{M} satisfies a uniform ellipticity condition

$$\lambda^{-1} \sum_{i=1}^{n} \xi_i^2 \leq a_{ik} \xi_i \xi_k \leq \lambda \sum_{i=1}^{n} \xi_i^2.$$

We recall the definition of regularity: let Ω be a subregion of a region $V \subset \mathbb{R}^n$. Let B be the open unit ball centered at the origin and let P be the hyperplane $x_n = 0$. Ω shall be called a regular subregion [1] if:

- (I) Bd Ω is compact in V,
- (II) every $x \in \operatorname{Bd} \Omega$ has a neighborhood N(x) and a diffeomorphism $h \colon N(x) \to B$ such that $h(N(x) \cap \operatorname{Bd} \Omega) = B \cap P$ and $h(N(x) \cap \Omega)$ is one

Presented to the Society, April 1965; received by the editors November 16, 1964.

¹ This research was supported by the National Science Foundation under Grant No. NSF-GP-184.

of the two half balls of B-P,

(III) $\bar{\Omega}$ is compact in V,

(IV) Ω and $V - \bar{\Omega}$ have the same boundary in V,

(V) each component of $V-\Omega$ is noncompact in V.

We assume moreover that $h \in C^{(1,\lambda)}$.

We shall use the following lemmas as applied to regular solutions in Ω of $\mathfrak{M}u = 0$.

LEMMA I (POINCARÉ) [2]. If w, w_{x_i} are square integrable in a ball B_R of radius R, and if \bar{w} is the average of w over B_R , then

$$\int_{B_R} (w - \bar{w})^2 dX \leq C(B_R) \int_{B_R} \sum_{i=1}^n (w_{x_i})^2 dX,$$

where $C(B_R)$ denotes a constant which depends only on B_R .

LEMMA II (J. MOSER) [3]. If u is a solution of $\mathfrak{M}u = 0$ which is defined in |x| < 2R then, for $|x| \le R$

$$u^2(x) \leq CR^{-n} \int_{|x|<2R} u^2 dX,$$

where C denotes a constant.

We now give a bound for the first derivatives of a regular solution of $\mathfrak{M}u = 0$ in terms of

$$M_{\Omega}(u) = \int_{\Omega} a_{ik} \partial u / \partial x_i \partial u / \partial x_k dX.$$

THEOREM I. Let E be a compact subset of Ω . Then for $x \in E$, u a regular solution of $\mathfrak{M}u = 0$, one has

$$\left| \partial u/\partial x_k \right|_E \leq C(E) M_{\Omega}^{1/2}(u),$$

where C(E) denotes a constant depending only on E.

PROOF. Let $\delta > 0$ be defined such that the distance from E to Bd Ω is greater than 4δ . If we denote by B(x; R) the ball of center x and radius R,

$$B(x, 4\delta) \subset \Omega \quad \forall x \in E.$$

Let x_0 be a point of E, and let G(x; y) be Green's function for $B(x_0, 2\delta)$. Then:

$$u(x) = \int_{\operatorname{Bd} B(x_0,2\delta)} u(y) \partial/\partial \nu_y^* G(y;x) \, d_y \sigma, \qquad x \in B(x_0,2\delta),$$

where $\partial/\partial \nu^*$ denotes the conormal derivative. Hence (cf. [4])

$$\partial u/\partial x_k = \int_{\operatorname{Bd} B(x_0,2\delta)} u(y) \, \partial/\partial x_k \, \partial/\partial \nu_y^* G(y;x) d_y \sigma, \qquad x \in B(x_0,2\delta).$$

Let

$$\bar{u}(x_0; 2\delta) = \int_{B(x_0, 2\delta)} u(x) dx / \int_{B(x_0, 2\delta)} dX,$$

then

$$\frac{\partial u/\partial x_{k}}{\partial u/\partial x_{k}} = \int_{\operatorname{Bd} B(x_{0},2\delta)} (u(y) - \bar{u}(x_{0};2\delta)) \frac{\partial}{\partial x_{k}} \frac{\partial}{\partial v_{y}^{*}} G(y;x) d_{y}\sigma,$$

$$x \in B(x,2\delta),$$

$$\left|\frac{\partial u}{\partial x_{k}}\right| \leq C \max_{\operatorname{Bd} B(x_{0},2\delta)} \left|u(y) - \bar{u}(x_{0};2\delta)\right| \int_{\operatorname{Bd} B(x_{0},2\delta)} d_{y}\sigma/\left|x - y\right|^{n-1},$$

$$x \in B(x_{0},2\delta).$$

Let ω_n be the area of the n-1 sphere:

$$|\partial u/\partial x_k| \leq C\omega_n \cdot 2^{n-1} \max_{\text{Bd } B(x_0, 2\delta)} |u(x) - \bar{u}(x_0; 2\delta)|, \quad x \in B(x_0, \delta),$$

$$|\partial u/\partial x_k| \leq C^{\text{I}} \max_{y \in B(x_0, 2\delta)} |u(y) - \bar{u}(x_0; 2\delta)|, \quad x \in B(x_0, \delta),$$

by the maximum principle. By Lemma II

$$\left| \frac{\partial x}{\partial x_k} \right|^2 \leq C^{\text{II}} \int_{B(x_0, 2\delta)} (u(x) - \bar{u}(x_0, 2\delta))^2 dX \qquad x \in B(x_0, \delta),$$

and by Lemma I

$$|\partial u/\partial x_k|^2 \leq C^{\text{III}} \int_{B(x_0, 4\delta)} \sum_{i=1}^n (\partial u/\partial x_i)^2 dX$$

$$\leq C^{\text{III}} \lambda \int_{B(x_0, 4\delta)} \lambda^{-1} \sum_{i=1}^n (\partial u/\partial x_i)^2 dX$$

$$\leq C^{\text{IV}} M_{B(x_0, 4\delta)}(u),$$

and C^{IV} depends only on \mathfrak{M} and δ . Cover now E by a finite number, say N, of balls $B(x_i; \delta)$, $j = 1, \dots, n$.

Then

$$|\partial u/\partial x_k|^2 \leq C^{\nabla} M_{\Omega}(u), \quad x \in E,$$

where $C^{V} = \max_{j} C^{TV}$.

3. Let Ω be regular, and let x_0 be fixed in Ω . Consider a compact set $E \subset \Omega$. Let 4δ be a positive number smaller than the distance from $E \cup \{x_0\}$ to Bd Ω . Cover $E \cup \{x_0\}$ by a finite number of open balls of radius δ , $B(x_0, \delta), \dots, B(x_N, \delta)$. A point in each $B(x_i; \delta)$ can be joined to x_0 by an arc γ_i in Ω . Let $4\delta'$ be a positive number smaller than the distance from $\bigcup \overline{B}(x_i; \delta) \cup \bigcup \gamma_i$ to Bd Ω and cover each γ_i by a finite number of open balls of radius δ' , say $B(y_1, \delta'), \dots, B(y_s, \delta')$.

COROLLARY. Let u be a regular solution of $\mathfrak{M}u = 0$ vanishing at $x = x_0$, then for $x \in E$

$$|u(x)|^2 \leq K(E)M_{\Omega}(u)$$

where K(E) depends only on E (and on x_0).

PROOF. It follows from the theorem that if $B(\bar{x}, 4\delta'') \subset \Omega$ where $\operatorname{dist}(\bar{x}, \operatorname{Bd}\Omega) > 4\delta''$ then for x such that $|x-\bar{x}| < \delta$

$$|\operatorname{grad} u|^2 \leq C(\bar{x}, \delta'') M_{B(\bar{x}, 4\delta'')}(u).$$

Let x', x'' be points in $B(\bar{x}, \delta'')$ then

$$|u(x') - u(x'')| \le \int_{x'}^{x''} |\operatorname{grad} u| ds \le 2\delta'' C^{1/2}(\bar{x}, \delta'') M_{B(\bar{x}, 4\delta'')}^{1/2}(u).$$

Applying the last inequality to the covering defined by $B(x_i, 4\delta)$ and $B(y_i, 4\delta')$ one gets

$$|u(x) - u(x_0)|^2 = |u(x)|^2 \le K(E)M_{\Omega}(u),$$

which proves the corollary.

From the corollary and from the general theory [5] we get immediately the existence of a complete orthonormal system $\{\phi_r(x)\}$ and an expansion for Bergman's kernel

$$K(x,y) = \sum_{r=1}^{\infty} \phi_r(x)\phi_r(y),$$

which for fixed x converges uniformly on compact subsets of Ω . The $\phi_{r}(x)$ may be chosen so that $\phi_{r}(x_{0}) = 0 \quad \forall \nu$.

As an application we shall prove the following theorem.

4. THEOREM II. The function K(x, x) is bounded on every compact subset E of Ω .

PROOF. Cf. [6]. From Theorem I we get, for fixed k:

$$|\partial u/\partial x_k|_E \leq C(E)M_{\Omega}^{1/2}(u).$$

If u is a solution of $\mathfrak{M}u=0$, regular and such that $\partial u/\partial x_k=1$ at $X_0 \subset E$, then $M_{\Omega}(u) \geq 1/C^2(E)$.

Consider the function

$$\phi^*(x) = \lambda^{-1/2} \sum_{r=1}^N \partial \phi_r / \partial x_k(x_0) \phi_r(x) / \sum_{r=1}^N \left[\partial \phi_r(x_0) / \partial x_k \right]^2,$$

$$\mathfrak{M}\phi^* = 0 \quad \text{and} \quad \partial \phi^* / \partial x_k(x_0) = 1.$$

Therefore

$$M_{\Omega}(\phi^*) \leq \lambda \int_{\Omega} |\operatorname{grad} \phi^*|^2 dX = 1 / \sum_{r=1}^N [\partial \phi_r(x_0)/\partial x_k]^2.$$

Therefore

$$\sum_{k=1}^{N} \left[\partial \phi_{r} / \partial x_{k}(x_{0}) \right]^{2} \leq C^{2}(E),$$

and

$$\sum_{r=1}^{\infty} \left[\partial \phi_r / \partial x_k(x_0) \right]^2 \leq C^2(E),$$

and this is true for all $x_0 \in E$. An analogous proof works for all k, $k = 1, \dots, n$.

Now, we have

$$\sum_{r=1}^{N} [\phi_{r}(x)]^{2} = \sum_{r=1}^{N} [\phi_{r}(x) - \phi_{r}(x_{0})]^{2}$$

and

$$\begin{aligned} [\phi_r(x) - \phi_r(x_0)]^2 &\leq \left[\int_{\gamma(x_0, x)} |\operatorname{grad} \phi_r| \, ds \right]^2 \\ &\leq 4L^2 \int_{\gamma(x_0, x)} |\operatorname{grad} \phi_r|^2 \, ds \end{aligned}$$

where $\gamma(x_0, x)$ is an arc from x_0 to x, lying in Ω and of length L; therefore

$$\sum_{r=1}^{N} [\phi_{r}(x)]^{2} \leq 4L^{2}C^{2}(E),$$

and

$$\sum_{n=1}^{\infty} [\phi_r(x)]^2 = K(x, x) \le 4L^2C^2(E).$$

We are now ready to give the best estimate for K(E) in the corollary. Let p_0 and p_1 be the principal functions for $\mathfrak{M}u=0$ and Ω , defined as in [1]. From Theorem 6 in [1],

$$|u(x)|^2 \leq M_{\Omega}(p_0 - p_1)M_{\Omega}(u)$$

with equality only for $u=a(p_0-p_1)$, $a \in \mathbb{R}$. Moreover, Theorem 5 in [1] shows that

$$M_{\Omega}(u) - 2u(x) = M_{\Omega}(p_0 - p_1) + M(u - p_0 + p_1),$$

or

$$u(x) = M_{\Omega}(u, p_0 - p_1).$$

It follows that $p_0 - p_1$, which vanishes at $x = x_0$ is the Bergman kernel for the space of regular solutions of $\mathfrak{M}u = 0$ in Ω vanishing at x_0 ,

$$|u(x)|^2 \leq K(x, x) M_{\Omega}(u),$$

and $\sup_{E} K(x, x)$ is the best possible value for K(E).

Another application of the previous results would be the obtention of the extremal properties of principal functions [1] for open regions V of \mathbb{R}^n , such that there exists a nested sequence of regular $\{\Omega_n\}$, with the properties $\Omega_{n+1} \supset \overline{\Omega}_n$ and $\bigcup_n \Omega_n = V$.

BIBLIOGRAPHY

- 1. L. Sario and G. G. Weill, Normal linear operators and second order elliptic partial differential equations, Trans. Amer. Math. Soc. 120 (1965), 225-235.
- 2. H. Poincaré, Sur les équations de la physique mathématique, Rend. Circ. Mat. Palermo 8 (1894), 57-155.
- 3. J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468.
- 4. G. Fichera, Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all'equazione e ai sistemi di equazioni del secondo ordine di tipo ellittico autoaggiunti, Ann. Scuola Norm. Sup. Pisa (3) 1 (1947), 75-100.
 - 5. ——, Sulla "Kernel functions," Boll. Un. Mat. Ital. 7 (1952), 4-15.
- 6. S. Bergman, Functions satisfying certain partial differential equations of elliptic type and their representation, Duke Math. J. 14 (1947), 349-366.

YESHIVA UNIVERSITY