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1. We present here a generalization of the theory of Bergman's

kernel function for uniformly elliptic partial differential equations of

the divergence type

3TÏM = d/dxk (aikdu/dXi) = 0.

It is known that for regular open sets Q in R" the expression

Ma(u) =   I  a,* du/dXi du/dxk dX
Ja

is a natural norm on the space of regular solutions of 9TCm = 0 vanish-

ing at a point XoQQ. It is proved that for E compact in fi, xQE

| u(x) |2 ¿ K(E)Ma(u).

The existence of Bergman's kernel K(x, y) and the convergence of its

expansion in terms of a complete orthonormal set of functions follows

at once. We prove the boundedness of K(x, y) on compact subsets

of ß. A sharp value for K(E) is found to be supB K(x, x).

2. We consider partial differential equations of the type

9TCw = d/dXk (aikdu/dXi) = 0,        i, k = 1, • • • , n,

where the coefficients aikQCaM in a regular region QQRn. More-

over, 3TÍ satisfies a uniform ellipticity condition

-1  A     2 A     2
X    Z £• á aik$£k ¿\¿Zb-

«=i «-i

We recall the definition of regularity : let ß he a subregion of a region

VQR". Let B he the open unit ball centered at the origin and let P

be the hyperplane xn = 0. ß shall be called a regular subregion [l] if:

(I) Bd ß is compact in V,

(II) every xQBd fi has a neighborhood N(x) and a diffeomorphism

h: N(x)-+B such that h(N(x)C\Bd Q) =BC\P and h(N(x)(~\Q) is one
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of the two half balls of B-P,
(III) Q is compact in V,

(IV) fi and V—Q have the same boundary in V,

(V) each component of V—0 is noncompact in V.

We assume moreover that fe£C(1,x).

We shall use the following lemmas as applied to regular solutions

in ñof 9ïltt = 0.

Lemma I (Poincaré) [2]. If w, wXi are square integrable in a ball

Br of radius R, and if w is the average of w over Br, then

f   (w - w)2 dX á C(BR) f    E K()! dX,
J BB J BR   i-1

where C(Br) denotes a constant which depends only on Br.

Lemma II (J. Moser) [3]. If u is a solution of 9TC« = 0 which is de-

fined in \x\ <2R then, for \x\ ^R

u2(x) ̂  CR~n f       u2 dX,
J \x\<2R\x\<iR

where C denotes a constant.

We now give a bound for the first derivatives of a regular solution of

9TCm = 0 in terms of

Ma(u) =   j  aikdu/dXidu/dxkdX.
J a

Theorem I. Let Ebe a compact subset of 0. Then for xEE, u a regu-

lar solution of 3Um = 0, one has

\du/dxk\E^C(E)Ma\u),

where C(E) denotes a constant depending only on E.

Proof. Let S>0 be defined such that the distance from E to Bd fi

is greater than 45. If we denote by B(x; R) the ball of center x and

radius R,

B(x, 45) C Œ   \fxEE.

Let x0 be a point of E, and let G(x; y) be Green's function for B(x0, 25).

Then:

u(x) =  f
J T

u(y)d/dvy*G(y; x) o>,       x E B(x0, 25),
Bd B(x0,2J)
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where d/dv* denotes the conormal derivative. Hence (cf. [4])

du/dxk =   I u(y)d/dxkd/dv*G(y;x)dyo-,       xQB(x0,2S).
J Bd B(x«.it1Bd B(l0,2i)

Let

ü(x0; 25) =   I u(x) dx        \ dX,
J B(i0,2i) I       J B(za,iS)

then

du/dXk =   I («(y) - «(*<>; 25)) d/dxkd/dv?G(y; x) dva,
J Bd B(.x„,iS)

xQ B(x, 25),

| du/dxk |  ¿ C    max     | u(y) - ü(xü; 25) |   1 dva/ \ x - y I""1,
BdB(i0.2i) *^Bd JS(i0,2J)

x Q B(xo, 25).

Let o>„ be the area of the n — 1 sphere :

| du/dxk | ¿ Cun■ 2""1    max     | u(x) - u(x0; 25) | ,       a; £ B(x0,5),
Bd B(x0,25)

| du/dxk |   ^ C1    max     | «(y) - m(#0; 25) | ,        x Q B(x0, 5),
KeB(i0,2i)

by the maximum principle. By Lemma II

| dx/dxk |2 ¿ Cn f (u(x) - ü(xo, 25))2 dX       xQ B(x0, S),

and by Lemma I

| du/dxk |2 ¿ C™ f ¿ (aM/3x¿)2¿X
''Bdo^ä)   i=l

g CinX i" X-1 ¿ (du/dXi)2 dX
•I B(x0,4J) ¿-i

g  C^lf^,,.,,^«),

and CIV depends only on 9TÏ and 5. Cover now £ by a finite number,

say N, of balls B(xs; Ô), j= 1, • • • , ».

Then

\du/dxk\2¿CfMa(u),       xQE,

where C = maxy C™.
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3. Let ß be regular, and let x0 be fixed in ß. Consider a compact

set E Cß. Let 45 be a positive number smaller than the distance from

£U {xo} to Bd ß. Cover £U {x0} by a finite number of open balls of

radius 5, B(x0, 6), • • • , B(xN, 5). A point in each B(xí; 5) can be

joined to x0 by an arc yt in ß. Let 45' be a positive number smaller

than the distance from \JB(xí; 5) Wily* to Bd ß and cover each 7, by

a finite number of open balls of radius 5', say B(yi, 8'), • • • , B(y„ à').

Corollary. Let ube a regular solution of 3TCw = 0 vanishing atx = x0,

then for xEE

I u(x) |2 ^ K(E)Ma(u)

where K(E) depends only on E (and on x0).

Proof. It follows from the theorem that if B(x, 45") Cß where

dist(á, Bd ß)>45" then for x such that |¡e-*| <5

I grad « |2 Ú C(X, 8")MBv,iS»)(u).

Let x', x" be points in B(x, 8") then

/,x" I grad « I ds g 28"Cm(x, «")#*».«»>(«)•
X'

Applying the last inequality to the covering defined by B (xit 45) and

B(y¡, 45') one gets

I u(x) - u(xo) |2 = I u(x) |2 ^ K(E)Ma(u),

which proves the corollary.

From the corollary and from the general theory [S] we get im-

mediately the existence of a complete orthonormal system (<£,(x)}

and an expansion for Bergman's kernel

K(x,y) = E*.(*)*>(y).
r—l

which for fixed x converges uniformly on compact subsets of ß. The

<pr(x) may be chosen so that <p~r(x0) =0 Mv.

As an application we shall prove the following theorem.

4. Theorem II. The function K(x, x) is bounded on every compact

subset E of ß.

Proof. Cf. [6]. From Theorem I we get, for fixed k:

I du/dxk \x ^ C(E)Mli\u).
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If « is a solution of 9TCm = 0, regular and such that du/dxk=l at

XoQE, then Jlfn(«) ̂ 1/C2(£).
Consider the function

N j     N

<p*(x) = X-1'2 2Z d<bv/dxk(xo) <p,(x) / ZZ [d<t>r(xo)/dxk]2,

WL<b* = 0   and   d<p*/dxk(x0) = 1.

Therefore

Ma(<p*) ¿ X f I gradtf*!2 dX = 1 I £ [è>,(*0)/3st]2.
•'11 /        V-1

Therefore

AT

E [à<P,/dXk(xo)}2 ¿ C2(E),
v-l

and

£ [^,/a^o)]2 á c2(P),

and this is true for all XoQE. An analogous proof works for all ¿,

¿ = 1, •••,».
Now, we have

£ [*»(*)]* = £ [*>(*) - *.(*<>)]2
t-1 r-l

and

[<t>,(x) - <t>,(xo)]2 ¿\  f        I grad 0,1 ail

¿ AL2 f
J y(*o.*)

grad 0,12 ¿5

where 7(¡Co, x) is an arc from Xo to x, lying in ß and of length L;

therefore

£ [*(*)]» g 4L2C2(P),

and
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E [<t>,(x)Y = K(x, x) á 4L2C2(E).
F-l

We are now ready to give the best estimate for K(E) in the corol-

lary. Let po and pi be the principal functions for 9TCíí = 0 and ß, de-

fined as in [l]. From Theorem 6 in [l],

| u(x) |2 g Ma(po - px)Ma(u)

with equality only for u = a(p0—pi), aER- Moreover, Theorem 5 in

[l ] shows that

Ma(u) - 2u(x) = Ma(po - pi) + M(u - p0 + pi),

or

u(x) = Ma(u, po — pi).

It follows that po—pi, which vanishes at x = x0 is the Bergman kernel

for the space of regular solutions of 3TCw = 0 in ß vanishing at x0,

| u(x) |2 á K(x, x)Ma(u),

and sup£ K(x, x) is the best possible value for K(E).

Another application of the previous results would be the obtention

of the extremal properties of principal functions [l ] for open regions

F of Rn, such that there exists a nested sequence of regular {ß„},

with the properties ß„+iDn„ and Un ß„= V.
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