ON BERGMAN’S KERNEL FUNCTION FOR SOME
UNIFORMLY ELLIPTIC PARTIAL DIFFERENTIAL
EQUATIONS

G. G. WEILL!

1. We present here a generalization of the theory of Bergman's
kernel function for uniformly elliptic partial differential equations of
the divergence type

Mu = 9/9x (aadu/dx;) = 0.

It is known that for regular open sets € in R" the expression
Mo(u) = f ag Ou/3%; 0u/dx, dX
Q

is a natural norm on the space of regular solutions of 9Mu =0 vanish-
ing at a point x,EQ. It is proved that for E compact in @, xEE

| u(@)|* < K(E)Mo(u).

The existence of Bergman'’s kernel K (x, y) and the convergence of its
expansion in terms of a complete orthonormal set of functions follows
at once. We prove the boundedness of K(x, ¥) on compact subsets
of Q. A sharp value for K(E) is found to be supg K(x, x).

2. We consider partial differential equations of the type
Mu = /0%, (aadu/dx;) = 0, LE=1,---,n,

where the coefficients ¢4 &ECY™ in a regular region QCR". More-
over, 9N satisfies a uniform ellipticity condition

N E S aabte SN
=1 =1

We recall the definition of regularity: let @ be a subregion of a region
VCR" Let B be the open unit ball centered at the origin and let P
be the hyperplane x,=0. Q shall be called a regular subregion [1] if:

(I) Bd Q is compact in V,

(IT1) every x&Bd Q has a neighborhood N(x) and a diffeomorphism
k: N(x)—B such that A(N(x)MNBd ©) =BNP and k(N(x)NQ) is one
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of the two half balls of B—P,
(IIT) & is compactin V,
(IV) @ and V—Q have the same boundary in V,
(V) each component of V—Q is noncompact in V.
We assume moreover that A& C*M.,
We shall use the following lemmas as applied to regular solutions

in Q of Mu=0.

LemMA I (PoiNcarE) [2]. If w, w., are square integrable in a ball
Br of radius R, and if % is the average of w over B, then

f (w — w)2dX = C(Bg) > (w.)?dX,
Bp BR =l
where C(Br) denotes a constant which depends only on Beg.

LemMA II (J. MosER) [3]. If u is a solution of Mu=0 which is de-
fined in | x| <2R then, for |x| SR

u*(x) < CR—™ f u?dX,
|z|<2R
where C denotes a constant.

We now give a bound for the first derivatives of a regular solution of
Mu =0 in terms of

Mn(u) = f asx au/ax; au/axk aX.
Q

THEOREM I. Let E be a compact subset of . Then for xCE, u a regu-
lar solution of Mu=0, one has

1/2

| ou/0x: |2 < C(E)Ma (w),
where C(E) denotes a constant depending only on E.

Proor. Let § >0 be defined such that the distance from E to Bd Q
is greater than 44. If we denote by B(x; R) the ball of center x and
radius R,

B(x, 4) C Q@ yxE E.

Let x, be a point of E, and let G(x; y) be Green's function for B(x,, 26).
Then:

u(x) = f u(y)d/9v*G(y; %) dyo, x € B(xo, 26),
Bd B(z0,28)
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where 3/dv* denotes the conormal derivative. Hence (cf. [4])
ou/ox, = f u(y) 3/0x:,0/9v* G(y; x)dyo, x € B(xo, 25).
Bd B (z0,28)

Let
(xo; 20) = f u(x) dx/ f ax,
B (z0,25) B (z,28)

then

ou /o, = f (W(y) — (0; 20)) /023w Gly; 2) dyo,
Bd B (2g,28)

x € B(x, 20),

|ou/oz| <= C max | u(y) — @(xo;20)| dyo/ | & — y|=1,
Bd B(z,23) Bd B(z9,28)

x € B(xo, 25).
Let w, be the area of the n—1 sphere:

|6u/3xk| < Cw,-2*! max | u(x) — a(xo;26)| , x € B(xo,9),
Bd B(z,28)

| ou/d2| < €' max l u(y) — a(xo;26)| , x € B(x,9),

YEB(20,28)
by the maximum principle. By Lemma II
I %/ 0% |2 sCcu f (u(x) — @(xo, 28))2 dX x € B(xy, 9),
B(2,28)

and by Lemma I

| u/om |2 < cr 2. (3u/dz)dX
B(zg,48) =1
< cm) A1 Y (Qu/ox)dX
B (z9,48) fm=1

< CVM B(z,a8)(4),

and C™ depends only on 9% and 6. Cover now E by a finite number,
say N, of balls B(x;; 8), j=1, - - -, m.
Then

| du/0x:|* < C"Ma(n), =€ E,
where CV =max; C™.
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3. Let Q be regular, and let x, be fixed in ©. Consider a compact
set ECQ. Let 46 be a positive number smaller than the distance from
EU{x,} to Bd Q. Cover EU {x,} by a finite number of open balls of
radius 8, B(x,, 9), * - -, B(xwn, 8). A point in each B(x;; &) can be
joined to x¢ by an arc ; in . Let 48’ be a positive number smaller
than the distance from UB(x;; 8)\UUy; to Bd © and cover each v; by
a finite number of open balls of radius &', say B(y, 8'), « - -, B(y,, ).

COROLLARY. Let u be a regular solution of Mu =0 vanishing at x=x,,
then for x€E

| u(x) |* = K(E)Ma(u)

where K(E) depends only on E (and on x,).
Proor. It follows from the theorem that if B(%, 46’") CQ where
dist(, Bd ) >48" then for x such that |x—%| <8

| grad u|2 < C(#, 8") M .avy(w).
Let ', 2’ be points in B(%, §'') then

vy
| w(@) — u(=")| = f | grad #| ds < 26"01/2(:?, 8") M o s,085 ().

Applying the last inequality to the covering defined by B(x;, 46) and
B(y;, 40’) one gets

| u(x) — u(xo) |2 = | u(®) |* = K(E)Ma(w),

which proves the corollary.

From the corollary and from the general theory [5] we get im-
mediately the existence of a complete orthonormal system {¢,(x)}
and an expansion for Bergman’s kernel

K(,y) = §;¢.(x>¢.<y>,

which for fixed x converges uniformly on compact subsets of Q. The
¢,(x) may be chosen so that ¢,(x,) =0 W».
As an application we shall prove the following theorem.

4. THEOREM lI. The function K(x, x) is bounded on every compact
subset E of Q.

ProoF. Cf. [6]. From Theorem I we get, for fixed k:

| 9u/ox |z < C(E)MS (w).
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If u is a solution of Mu=0, regular and such that 9»/dx,=1 at

X\EE, then Mg(u)21/C%(E).
Consider the function

N N
$(x) = N2 3 0,/ 04(0) () / 2 [ot(w/anl
Me* = 0 and 9¢*/dx(x0) = 1.

Therefore
Ma(¢*) =\ f n| grad ¢*[2dX = 1 i: [0, (x0) /0]
Therefore
é [0¢,/0x:(20)]? = C*(E),
and
>_§ [8¢»/02:(x0)]* < C(E),
and this is true for all x,€E. An analogous proof works for all %,

k=1, ,mn.
Now, we have

N N
Z} [6.()]* = Zi [6:() — 6u(x0)]?
and

2
| grad | ds]

(20,2)

[6.(2) — do(x)]* = [ L

=< 4L’f | grad ¢,|’ds
7(20,%)

where y(xo, %) is an arc from x, to x, lying in @ and of length L;
therefore

N
Zl [¢:(x)]* = 4L°C¥(B),

and
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fi [¢,(*)]? = K(x, x) < 4L*C*(E).

We are now ready to give the best estimate for K(E) in the corol-
lary. Let po and p; be the principal functions for Mu =0 and Q, de-
fined as in [1]. From Theorem 6 in [1],

| u(x) |2 S Ma(po — pr)Ma()

with equality only for #=a(po—21), a ER. Moreover, Theorem § in
[1] shows that

Mo(u) — 2u(x) = Ma(po — p1) + M(u — po + $1),
or
u(x) = Ma(u, po — p1).

It follows that po— p1, which vanishes at x =x, is the Bergman kernel
for the space of regular solutions of 9Mx =0 in Q vanishing at %,

| u(x) |2 < K(x, x)Ma(u),

and supg K(x, x) is the best possible value for K(E).

Another application of the previous results would be the obtention
of the extremal properties of principal functions [1] for open regions
V of R", such that there exists a nested sequence of regular {Q,.},
with the properties 2,41 D8, and U, Q,=V.
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