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1. Introduction. In this article we prove a theorem about con-

vergence of sequences {Sn} of linear fractional transformation, gen-

erated by a suitably restricted sequence {sn}- In the proof we shall

make essential use of results recently obtained by Thron [2]. This

theorem will then be employed to obtain a general convergence cri-

terion for continued fractions Kñ^i (a„/bn). Finally, we shall indicate

how certain classical as well as more recent results can be obtained

as corollaries.

2. A convergence theorem for sequences of linear fractional : trans-

formations. Consider a sequence {sn(z)}, where for each n ^ 1,

,„   -v , s        Kz + ßn
(2.1) *„(*)=-;-

pnZ + <Tn

is a nonsingular linear fractional transformation. Further, for each n,

let sn(z) satisfy the mapping property

(2.2) sn(U)EU,

where U is the unit circular region \z\ ^ 1. Form from this sequence a

new sequence {S„(z)} defined as follows

Si(z) = Si(z),    and for   n > 1,

S„(z) = Sn-i(sn(z)).

We see that a sequence of nested circular regions Kn, with centers c„

and radii r„, is determined. That is,

(2.4) Kn  = Sn(U)   = Sn-l(Sn(U)) C Sn-l(U)   =  Kn-1.

It is well known that the most general linear fractional transforma-

tion which maps the region U onto itself is of the form :

z + Gn ,      ,
c.-»»   -,    where   \Qn\  = gn < 1.

Gnz+ 1

It follows that we may write
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Z+G~n
Sn(z)-cn + rne^-——,

lrnZ + 1

where c„ is the center and r» is the radius of Kn. It is then readily

established that

[c„ + GnRn] - 2
(2-5) SñKz) = -;-¡A-'-=

Gnz — [c„G„ + Rn]

where for convenience r„e<Mn has been written as Pn. From the defin-

ing equations (2.3) for Sn(z) it is seen that sn(z) man be written as

(2.6) sn(z) = S:li(S„(z)).

It follows that

X„Z + Pn
Sn(z)   =

PnZ + 0-n

may also be written as

[(Cn-l — Cn)G„—Rn+GnGn-lRn-l]z+ [(Cn_l—Cn) — G^in+Gn-lRn-l]
(2.7) s.(z)

l(fn — Cn_l)GnG„_l— GnRn-l + Gn-iRn]z+[(Cn — Cn-l)Gn_l — Rn-l+GnGn-iRnl

Since there must be equality up to a multiplicative constant between

corresponding coefficients in the two expressions for sn(z) it follows

that

X„ (c„_l — Cn)G„ — R„ + GnGn-lRn-l

Pn (Cn — C„-l)G„Gn-l ~ GnRn-l + Gn-lRn

If X„/p„ is some constant k, then (2.8) reduces to

(Cn-l -  C„)Gn(l  +  kGn+l)   -  Rn(l  + kGn-l)  + GnRn-l(Gn-l +  k)   =  0,

which can be rearranged to yield

Rn k +  Gn-1
(2.9) —- = Rn-l + (Cn-l - Cn).

Un Cr„_iÄ + 1

In view of the nestedness of the circular regions K„, it follows that

| Cn-i — cn |  ¿ (rn-i — rn).

Further, if | k \ ¿ 1 it is seen from the structure of the expression

(k+Gn-i)/ (Gn-ik+1) that it is not greater than 1 in absolute value.

Hence, it follows that
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Rn
(2.10) = — ^ r„_i + (r„_i — r„).

S»

Rearrangement of the expression (2.10) yields a bound for the ratio

rB/rn-i of successive radii of the nested circular regions Kn,

(2.H)     _!^_ÜL_=1_ir^ = 1-k_<;i-^
r„_i 1 + gn 1 + g» 1 + gn 2

where ¿>„ = 1 — g„. Repeated application of (2.11) establishes that

(212) -s[s(1-t)>s1-

Now 2^1p-2 àp/2 an(i ITp=2 (I-op/2) converge or diverge together.

If 2i°-2 Sp/2 diverges, then Hj°_2 (1 — bp/2) diverges to zero since

its sequence of partial products is monotone decreasing. This estab-

lishes that lim„_oo r„ = 0. In this, the limit point case, it is clear that

the sequence {Sn(z)} converges at least for all z in the unit circular

region U (see [2, Theorem 3.1]).

If 2^-2 Sp/2 converges, then JIp-2 (1 —5p/2) converges to a limit

R<1 and different from zero. Thus, lim„..oo rn = r^0. If r>0, this is

called the limit circle case. Consider then the quantity

(2.13)

Rn        Rn-1 k + G„-l Rn-1

G„ Gn-1 Gn-xk +1 G„

Rn-1      1   - gn-1 . .
+ (C„_l — Cn) .

Gn-1   1   + kGn-1

Applying (2.13) repeatedly yields

2

Rn+m Rn ™      Rn+P-1     1    —  gn+p-1
r-7T = (c» - c«-h») - -L- -"   or
Lrn+m        On p=-l   Un+p—1    -l T" «<-Zn+j>-l

(2.14)

*n+» G„
Ú (r„ - rn+m) + 1,-■ -1-.

j>-l   gn+p-l j   1  T «On+p-1 |

Since 2~Lp-2 8p/2 converges, then Sp-+0 and this implies that g„—»l.

Thus, for sufficiently large n, gn+p_i>l/2. Further recall that rn+p_i

<1, and 5n+P_i = l—gn+JI_i. We now make the additional assumption

\k\ <1. The inequality (2.14) may therefore be rewritten as
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Rn+m Rn

Tn+m

<( ,    ,    ^      1       8n+p-!(l + 1)

Gn     ={r" rn"") +  èi(|) 1-lKDl

A m

=  (rn — fn+m) + ~ ¡—p 2-1 ^n+p-l

1  -    I * I   P-l

4 n+m—1

= (rn — rn+m) +  ..   _   |  , |     2-i   '«•

Since limn^.,0 f„ = r and ¿~^P-i 8P converges, the sequence

(Rn\        f r.««-)

\ Gn J \ gne*4

converges. This implies that {w„—yn} is convergent. The condition

that gn—»1 and (to„-yn\ converge was shown by Thron [2, Theorem

5.1] to be sufficient to insure that the sequence {.S„(z)} converges

at least for all z in the interior of the unit circular region U.

This completes the proof of the following theorem.

Theorem 1. If {Sn(z)} is a sequence generated by the defining equa-

tions (2.3) from a sequence {sn(z)\ of nonsingular linear fractional

transformations of the form

X„z + pn
M«) =-;-'

PnZ + <rn

and if for each n, sn(z) has the property that

sn(U) Q U,

where U is the circular region determined by \z\ ¿1, and if in addition

n i    i

— = k,   where    \k\   < 1,
Pn

then the sequence {Sn(z)} converges at least for all z in the interior of U.

3. A convergence criterion for continued fractions. For each «^ 1

let

an
tn(z) =-¡-> On 5* 0,

¿n + S

and define Pi(z)=fi(z), Tn(z) = T„-i(tn(z)), »Ü1. Then it is well

known that { Pn(0)} is the sequence of approximants of the continued

fraction K(an/bn). Let K denote a circular region determined by
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|z- c|  gf

where 0^ | c| <r, so that OEK. If for each n, the elements a„ and bn

are so restricted that,

UK) C K,

then by means of Theorem 1 it can be shown that { F„(0)} converges.

This is seen as follows.

The transformations

sn(z) = v-l(tn(v(z))),    where

v(z) = rz + c, and
(3.1)

z — c
v~l(z) =-1 for all n ^ 1,

r

have the property that sn(U)EU, whenever tn(K)EK. From (3.1)

it is seen that

(-rc)z + (an - c[bn + c\)
sn(z) =--T-;-•

(r2)z + (r[bn + c])

Since 0 ^ | c| <r, it is clear that the ratio | X„/p„| = | — c/r \ < 1. Thus,

by Theorem 1, the sequence {Sn(z)} defined as in (2.3) converges at

least for all z in the interior of U. Since further, by repeated applica-

tion of (3.1),

Sn(z)   = V-\Tn(v(z))),

and t»-1(0) is in the interior of U, it follows that { F„(0)} converges

whenever the elements on and bn are so restricted that

(3.2) tn(K)EK.

Theorem 2. Let K be the circular region defined by \z — c\ ^r, where

\c\ <r. Let the elements of the continued fraction Kñ-i (an/bn) satisfy

the requirement

tn(K) C K,   for alln^ 1,

where

a„
tn(z) = -—■— >        0,^0

bn + z

then the continued fraction converges to a value vEK.

Since, if |a„| ^1/4, the region K, defined by   |z —1| ^1/2  is
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mapped into itself by the transformations a„/(l+z), the Worpitzky

criterion is a corollary of our theorem, except that our result does not

take care of the case where an = 0 for some ». The same remark applies"

also to the other two results mentioned below.

Next if Ibn\ ^ |o„| +1 then tn(U)QU so that the Pringsheim cri-
terion also can be derived from Theorem 2.

It was proved by Thron [l ] that a sufficient condition for the con-

vergence of a continued fraction of the form K(l/bn) is that | bn — 2c\

^2(c2 + l)1/2, where c is an arbitrary real number. Since it is known

that, if the bn satisfy this condition, then the transformations

l/(bn+z) map the circle |z+c| ^(1+c2)1'2 into itself, this result also

follows from Theorem 2. The original proof of this theorem was by

nonelementary means, that is, essential use was made of the Stieltjes-

Vitali theorem. Recently we have given another elementary proof of

this result which has the advantage over the present proof that it

gives information about the speed of convergence, and shows that the

convergence is uniform.

Now consider the restrictions imposed upon the elements an and

b„ by the mapping property (3.2). First, it is easily seen that the

image tn(K) of K is unbounded unless

(3.3) \bn + c\ >r.

Under condition (3.3), tn(K) is determined by

an[bn + c]~

bn + c 2-r2 bn + c \2-r2

The condition that this circular region be contained in K is expressed

by

an[bn + c\-
+ 1-¡-¿ r.

\bn + c \2-r2\bn + c\2-r2

This may be rewritten as

(3.4)   \an[bn + c]--c(\b„ + c\2-r2)\ + \an\r ¿r(\bn +c\2 + r2).

Now if

(3 5)   \an\\b» + c\  + \c\(\K + c\2-r2) + I «. I '

ûr(\bn + c\2-r2)

then the inequality (3.4) is clearly satisfied. Rearranging and sim-

plifying (3.5) yields

(3.6) I 0.1  ¿(r- \c\)(\bn + c\  -r).
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This completes the proof of another corollary of Theorem 4.1.

Corollary 1. Let rbe a positive number and let cbea complex num-

ber \c\ <r. Then the continued fraction K*ml (an/b„) converges if for all

w^l

0< | o,|  á(f- |c|)(|6„ + c|  -r).
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