TRANSLATIONS OF THE IMAGE DOMAINS OF ANALYTIC FUNCTIONS¹

THOMAS H. MACGREGOR

If D is a set of complex numbers and a and b are given numbers then by aD+b we mean the set of numbers ad+b where $d \in D$. Translations of D will be denoted by D+b, and the number |b| will be called the length of D+b.

Let D denote the image of |z| < 1 under an analytic function f(z). The first theorem proved in this paper is the following: if $f(z) = a_0 + z^n + a_{n+1}z^{n+1} + \cdots$ then each translation of D of length less than $\pi/2$ meets D. In the case where f(z) is univalent (and therefore n = 1) the existence of such a nonzero constant follows from the fact that D covers the circle $|w-a_0| < 1/4$.

Next we show that if $f(z) = z^n + a_{n+1}z^{n+1} + \cdots$ then each domain obtained by rotating and translating D meets D, if the translation is of length less than 1. Also, if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and a translation of D of length δ does not meet D, then $|a_n| \le e\delta/\pi$ for $n = 1, 2, 3, \cdots$, and $\sum_{n=1}^{\infty} |a_n|^2 \le \delta^2$.

LEMMA 1. If D is the image of |z| < 1 under an analytic function f(z) and if $D+b \cap D = \emptyset$, then, as n varies over the integers, the sets $\{D+nb\}$ are pairwise disjoint.

PROOF. A consideration of the functions f(rz), where 0 < r < 1, shows that we may assume that f(z) is analytic for $|z| \le 1$. The case of constant functions is trivial. Also, it suffices to prove the lemma only in the case where b is real and positive.

If m and n are unequal integers, say m > n, then $D + mb \cap D + nb = \emptyset$ is equivalent to $D + lb \cap D = \emptyset$ for some natural number l, namely l = m - n. Therefore, an inductive argument establishes the lemma once we prove: for each natural number n, $D + (n+1)b \cap D \neq \emptyset$ implies that either $D + b \cap D \neq \emptyset$ or $D + nb \cap D \neq \emptyset$.

Let n be any natural number and suppose that $w_1 \in D + (n+1)b \cap D$. We consider the following curves and points: L_1 and L_2 are the lines of support of D parallel to the real axis with L_1 "below" L_2 ; w_2 is a boundary point of D on L_1 , $w_3 = w_2 + b$, $w_4 = w_2 + (n+1)b$; w_5 is a boundary point of D+b on L_2 ; α is a curve ordered from w_1 to w_2 and lying in D except for w_2 ; β is a curve ordered from w_4 to w_1 and lying

Received by the editors December 10, 1963.

¹ The research for this paper was partially supported by the National Science Foundation through the grant NSF-GP-161.

in D+(n+1)b except for w_4 ; γ is a curve lying in D+b except for its endpoints, w_3 and w_5 ; K is a circle $w=w_3+re^{i\theta}$, $0 \le \theta \le 2\pi$, where 0 < r < b; K_1 is the upper half of K and K_2 is the lower half of K; $w_6=w_3-r$, $w_7=w_3+r$; l_1 is the line segment from w_2 to w_6 , l_2 is the line segment from w_7 to w_4 ; $\delta_1=l_1+K_2+l_2+\beta+\alpha$, $\delta_2=l_1-K_1+l_2+\beta+\alpha$.

Let $n(\delta, w)$ denote the winding number of the closed curve δ with respect to the point w not on δ . Then $n(\delta_2, w_3) = 0$, for w_3 is in the unbounded component of the complement of δ_2 , and thus $n(\delta_1, w_3) = n(\delta_2, w_3) + n(K, w_3) = n(K, w_3) = 1$. Also, $n(\delta_1, w_5) = 0$. The curves γ and δ_1 must intersect, otherwise $n(\delta_1, w)$ would be continuous on γ , take on only integral values, and assume at least two different values. This point common to γ and δ_1 must be on $\beta + \alpha$, and it is neither w_2 nor w_4 . Therefore, either $D + b \cap D \neq \emptyset$ or $D + b \cap D + (n+1)b \neq \emptyset$. The second possibility is equivalent to $D + nb \cap D \neq \emptyset$.

NOTATION. To each set of complex numbers D we define another set H in the following way. Let E denote the complement of D in the extended plane, and let F be the component of E containing ∞ . Let G denote the complement of F in E, and set $H = D \cup G$. G consists of the "holes" in D so that H "fills in" D.

LEMMA 2. If D is a domain then H is a simply connected domain.

PROOF. F is closed, since it is a component of the closed set E. Therefore, H, the complement of F, is open.

The lemma is easy to prove if G is void. Otherwise, each component of G, say G_{α} , has a finite boundary point. Such a point belongs to G_{α} and is a boundary point of D, and consequently G_{α} meets the closure of D. Therefore, since D and G_{α} are connected, $H_{\alpha} = D \cup G_{\alpha}$ is connected. Then H is connected, for $H = \bigcup_{\alpha} H_{\alpha}$, and the sets $\{H_{\alpha}\}$ are connected and pairwise have common points. This completes the proof that H is a domain. Also, H is simply connected since F is connected in the extended plane.

LEMMA 3. Let D be the image of |z| < 1 under an analytic function f(z), and let D' = aD + b and H' = aH + b, where |a| = 1. If $D \cap D' = \emptyset$ then $H \cap H' = \emptyset$.

PROOF. We assume that G is nonvoid, otherwise the lemma is trivial. This also takes care of constant functions so that henceforth D is a domain.

A consideration of the functions f(rz), where 0 < r < 1, shows that we may assume that f(z) is analytic for $|z| \le 1$.

First we shall show that there is a point in D that is not in G',

where G' = aG + b. Let d(A) denote the diameter of the set A. Suppose w_1 and w_2 are points on the boundary of G satisfying $d(G) = |w_1 - w_2|$, and let L be the ray beginning at w_1 , that, if extended to a full line, would pass through w_2 . There are points on L belonging to F, for D is bounded and w_1 is the only point both on L and in G. Therefore, since F and G are separated there is a point w_3 that lies on L, is a boundary point of F, and is different from w_1 . Thus, $d(G) < |w_3 - w_2|$. Also, $|w_3 - w_2| \le d(D)$, for w_2 and w_3 are boundary points of D. This proves that d(G) < d(D). But d(G) = d(G') since |a| = 1, and thus d(G') < d(D). This implies that there is at least one point in D that is not in G'.

We will show that $D \cap G' = \emptyset$. On the contrary, suppose that $w_1 \in D \cap G'$. Let w_2 be any point such that $w_2 \in D$ and $w_2 \notin G'$, and let α be a curve lying in D with the endpoints w_1 and w_2 . Since $w_1 \in G'$ and $w_2 \notin G'$ there is a point w_3 such that w_3 is on α and w_3 is a boundary point of G'. Thus, w_3 is a boundary point of D' and $w_3 \in D$. Because of the openness of D this contradicts $D \cap D' \neq \emptyset$.

The roles of D and D' are interchangeable. In particular, the conditions D'=aD+b and |a|=1 are equivalent to the conditions D=a'D'+b' and |a'|=1. Thus, by interchanging D and D' and G and G' in our previous argument we obtain $D'\cap G=\emptyset$.

The lemma is proven once we show that $G \cap G' = \emptyset$. On the contrary, suppose that $G \cap G' \neq \emptyset$. Then $G \cap G'$ has a boundary point w_1 . Because of the symmetry in the roles of G and G' we may assume that w_1 is a boundary point of G. Then w_1 is also a boundary point of G. Let G' be any point such that $G' \in D$ and $G' \in G'$, and let $G' \in G'$ be the component of $G' \in G'$ containing $G' \in G'$, and set $G' \in G'$ be the component of $G' \in G'$ containing $G' \in G'$. If $G' \in G' \in G'$ is a connected subset of $G' \in G'$, and this violates the maximality of the component $G' \in G'$, for $G' \in G' \in G'$. Therefore, there is a point that lies on $G' \in G'$ and it is not $G' \in G'$. This contradicts $G \cap G' = \emptyset$.

THEOREM 1. Let D be the image of |z| < 1 under an analytic function $f(z) = a_0 + z^n + a_{n+1}z^{n+1} + \cdots$. Each translation of D of length less than $\pi/2$ meets D.

PROOF. Suppose that $D+b\cap D=\emptyset$. With a=1 Lemma 3 implies that $H+b\cap H=\emptyset$, and, in particular, H is not the whole plane. According to Lemma 2, H is a simply connected domain. Therefore, there is a function $g(z)=b_0+b_{1z}+b_2z^2+\cdots$ analytic and univalent for |z|<1 and mapping |z|<1 onto H so that g(0)=f(0). Then f(z)

is subordinate to g(z), and consequently there exists a function $\phi(z) = c_1z + c_2z^2 + \cdots$ that is analytic and satisfies $|\phi(z)| < 1$ for |z| < 1 and such that $f(z) = g(\phi(z))$. Using the form of f(z), $f(z) = g(\phi(z))$ and $b_1 \neq 0$ one obtains successively $c_1 = 0$, $c_2 = 0$, \cdots , $c_{n-1} = 0$, $c_nb_1 = 1$. The inequality $|c_n| \leq 1$ implies that $|b_1| \geq 1$.

Since $H+b\cap H=\emptyset$ Lemma 1 may be applied to H, and this implies that the function $h(z)=(2\pi i/b)g(z)$ assumes no pair of values differing by an integral multiple of $2\pi i$. Together with the fact that h(z) is univalent for |z|<1, this shows that the function $k(z)=e^{h(z)}$ is univalent for |z|<1. Also, the function $l(z)=(k(z)-k(0))/k'(0)=z+d_2z^2+\cdots$ is analytic and univalent for |z|<1, and $l(z)\neq -k(0)/k'(0)$ because $k(z)\neq 0$. Since $k(0)/k'(0)=b/2\pi ib_1$ an application of the 1/4-theorem to l(z) implies that $|b/2\pi ib_1|\geq 1/4$, $|b|\geq (\pi/2)|b_1|$. Using $|b_1|\geq 1$ we obtain $|b|\geq \pi/2$, and this proves the theorem.

Knowing the functions for which the 1/4-theorem is precise and those for which $|c_n| \le 1$ is precise one can show that this theorem is exact only for the functions $f(z) = (\bar{\epsilon}/2) \log \left[(1 + \epsilon z^n) / (1 - \epsilon z^n) \right]$ where $|\epsilon| = 1$. These functions map |z| < 1 onto a strip of width $\pi/2$.

THEOREM 2. Let D be the image of |z| < 1 under an analytic function $f(z) = z^n + a_{n+1}z^{n+1} + \cdots$. Each domain obtained by rotating and translating D meets D, if the translation is of length less than 1.

PROOF. Suppose that $aD+b\cap D=\emptyset$ where |a|=1. Because of Lemmas 2 and 3 the argument given in the proof of Theorem 1 shows that there exists a function $g(z)=b_1z+b_2z^2+\cdots$ analytic and univalent for |z|<1 and mapping |z|<1 onto H such that $|b_1|\geq 1$, and $aH+b\cap H=\emptyset$.

The functions g(z) and h(z) = ag(z) + b are univalent and have no values in common. The same properties are held by the functions $G(z) = 1/g(z) = A_{-1}/z + \sum_{n=1}^{\infty} A_n z^n$ and $H(z) = 1/h(z) = \sum_{n=0}^{\infty} B_n z^n$, and therefore $\sum_{n=0}^{\infty} n(|A_n|^2 + |B_n|^2) \le |A_{-1}|^2$ [4, p. 226, problem 14]. In particular, $|B_1| \le |A_{-1}|$, and from this we obtain $|b| \ge |b_1|$, since $B_1 = -ab_1/b^2$, $A_{-1} = 1/b_1$ and |a| = 1. Because $|b_1| \ge 1$ this shows that $|b| \ge 1$, and this proves the theorem.

It is not difficult to show that this theorem is sharp only for the functions $f(z) = z^n/(1+\epsilon z^n)$ where $|\epsilon| = 1$. Each such function is extremal, since it maps |z| < 1 onto a half plane bounded by a line that is tangent to the circle |w| = 1/2.

LEMMA 4. Let D be the image of |z| < 1 under an analytic function, and suppose that a translation of D of length δ does not meet D. Then

each line parallel to the direction of translation intersects D in a set whose linear measure does not exceed δ .

PROOF. It suffices to consider the case where $D+b\cap D=\emptyset$, b is real and positive and the line in question is the x-axis. Let A denote the intersection of D with the x-axis and let m(S) denote the measure of the set of real numbers S. Except for the trivial cases where the function is constant or A is void, A is an open set of real numbers, and therefore $A=\bigcup_{n=1}^{\infty}I_n$ where each I_n is an open interval. $D+b\cap D=\emptyset$ implies that $m(I_n)\leq b$ for each n. If I_n does not contain an integral multiple of b then there is an integer n' such that the set $I_n'=I_n+n'b$ lies in the interval $0\leq x\leq b$. If I_n contains a multiple of b, say n'b, then the point n'b breaks up I_n into two intervals, I_n and I_n , so that $I_n'=I_n-(n'-1)b$ and $I_n'=I_n-n'b$ lie in the interval $0\leq x\leq b$. In this case let $I_n^1=J_n'\cup J_n'$. Then, for all n, I_n' lies in the interval $0\leq x\leq b$, and $m(I_n')=m(I_n)$. According to Lemma 1 the sets $\{I_n'\}$ are pairwise disjoint, and therefore $m(A)=\sum_{n=1}^{\infty}m(I_n)=\sum_{n=1}^{\infty}m(I_n')\leq b$.

THEOREM 3. Let D be the image of |z| < 1 under an analytic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$. If a translation of D of length δ does not meet D, then

(1)
$$|a_n| \leq (e/\pi)\delta$$
, for $n \geq 1$,

(2)
$$\sum_{n=1}^{\infty} |a_n|^2 \leq \delta^2.$$

PROOF. Suppose that $D+b\cap D=\varnothing$ and $|b|=\delta$. Let z be any complex number such that |z|<1 and $f'(z)\neq 0$, and set $F(w)=f((w+z)/(1+\bar{z}w))=A_0+A_1w+\cdots$ so that $A_1=f'(z)(1-|z|^2)$. The function $G(w)=F(w)/A_1$ maps |w|<1 onto the domain $D^*=D/A_1$ so that $D^*+(b/A_1)\cap D^*=\varnothing$. Applying Theorem 1 (with n=1) to G(w) we obtain $|b/A_1|\geq \pi/2$, and therefore

$$|f'(z)| \leq \frac{2}{\pi} \frac{\delta}{1-|z|^2}.$$

This estimate also holds if f'(z) = 0.

Using (3) and the formula

$$na_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{f'(z)}{z^n} dz$$

we obtain $n |a_n| \le (2/\pi)\delta/(1-r^2)r^{(n-1)}$, valid for $n \ge 1$ and for each r satisfying 0 < r < 1. For n > 1 the choice of r such that $r^2 = (n-1) \cdot (n+1)^{-1}$ gives the estimate

$$|a_n| \le \frac{\delta}{\pi} \frac{n+1}{n} \left(1 + \frac{2}{n-1}\right)^{(n-1)/2}.$$

The function of n on the right of this inequality increases for n>1 and approaches $\delta e/\pi$ as $n\to\infty$. Therefore, $|a_n|<(e/\pi)\delta$ for $n\ge 2$. For n=1 we have the sharp estimate $|a_1|\le (2/\pi)\delta$.

To prove (2) we may assume that f(z) is not a constant. Let $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be a function analytic and univalent for |z| < 1 and mapping |z| < 1 onto H so that g(0) = f(0). Since f(z) is subordinate to g(z) for |z| < 1 it follows that

(4)
$$\sum_{n=1}^{\infty} |a_n|^{2r^{2n}} \leq \sum_{n=1}^{\infty} |b_n|^{2r^{2n}}$$

for each r satisfying 0 < r < 1 [3, p. 484, Theorem 2 with k=2].

Lemma 3 (with a=1) implies that $H+b\cap H=\emptyset$ so that the estimate (3) also applies to g'(z). Therefore, if $z=re^{i\theta}$ then

$$|g(z) - g(0)| = \left| \int_0^s g'(w) dw \right| \le \int_0^r |g'(e^{i\theta}t)| dt$$

$$\le \int_0^r \frac{2}{\pi} \frac{\delta}{1 - t^2} dt = \frac{\delta}{\pi} \log \frac{1 + r}{1 - r}.$$

Thus, g(z) maps $|z| \le \rho$ onto a set S contained in a circle of radius $R = (\delta/\pi) \log [(1+\rho)/(1-\rho)]$. Together with Lemma 4, this implies that the area of S satisfies $A \le 2\delta R$ and this inequality is equivalent to

(5)
$$\pi \sum_{n=1}^{\infty} n \left| b_n \right|^2 \rho^{2n} \le \frac{2\delta^2}{\pi} \log \frac{1+\rho}{1-\rho}.$$

Expressing the right side of (5) in a series in ρ , dividing both sides by ρ and integrating from 0 to r, we obtain

(6)
$$\sum_{n=1}^{\infty} |b_n|^2 r^{2n} \le \frac{8\delta^2}{\pi^2} \sum_{n=0}^{\infty} \frac{r^{2n+1}}{(2n+1)^2}.$$

Because of (4) this shows that

(7)
$$\sum_{n=1}^{\infty} |a_n|^{2r^{2n}} \le \frac{8\delta^2}{\pi^2} \sum_{n=0}^{\infty} \frac{r^{2n+1}}{(2n+1)^2}.$$

Using r < 1 and $\sum_{n=0}^{\infty} 1/(2n+1)^2 = \pi^2/8$ we obtain

(8)
$$\sum_{n=1}^{\infty} |a_n|^2 r^{2n} \leq \delta^2,$$

and (2) follows from (8) by letting $r\rightarrow 1$.

REMARKS. 1. Theorem 1 can be proved using either Lemma 1 or Lemma 4 and results obtained by the principle of symmetrization (see [2, Theorems 4.10 and 4.15]).

- 2. Theorem 3 should be compared with the following: if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic for |z| < 1, and if the values of f(z) lie in a strip of width δ , then $|a_n| \le (2/\pi)\delta$ for $n \ge 1$, and $\sum_{n=1}^{\infty} |a_n|^2 \le \delta^2/2$ (see: [5, p. 130, problem 238], [6, Theorem 10; 7]).
- 3. In [1] (see Theorem 3), the following is proved: if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic for |z| < 1, and if the image domain D does not contain arbitrarily large circles, then the sequence $\{a_n\}$ is bounded. This can be improved to $a_n \to 0$ as $n \to \infty$ in the case where H does not contain arbitrarily large circles. This is an immediate consequence of the convergence of $\sum_{n=0}^{\infty} |a_n|^2$, and this can be proven using an argument like that given in Theorem 3 with the fact that $|g'(z)| = O((1-|z|)^{-1})$ [1, p. 431, (3.3)], where g(z) is the function in Theorem 3.

REFERENCES

- 1. W. K. Hayman, Functions with values in a given domain, Proc. Amer. Math. Soc. 3 (1952), 428-432.
 - 2. ——, Multivalent functions, Cambridge University Press, Cambridge, 1958.
- 3. J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1925), 481-519.
 - 4. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
- 5. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. 1, Springer, Berlin, 1954.
- 6. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943-45), 48-82.
- 7. O. Tammi, Note on Gutzmer's coefficient theorem, Rev. Fac. Sci. Univ. Istanbul Sér. A 22 (1957), 9-12.

LAFAYETTE COLLEGE