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If D is a set of complex numbers and a and b are given numbers

then by aD+b we mean the set of numbers ad+b where dQD.

Translations of D will be denoted by D+b, and the number \b\ will

be called the length of D+b.
Let D denote the image of | z \ < 1 under an analytic function f(z).

The first theorem proved in this paper is the following : if f(z) = <x0

+zn+an+izn+1+ ■ • • then each translation of D of length less than

x/2 meets D. In the case where/(z) is univalent (and therefore « = 1)

the existence of such a nonzero constant follows from the fact that

D covers the circle \w—o0| <l/4.

Next we show that if f(z) =zn+an+izn+1+ • • • then each domain

obtained by rotating and translating D meets D, if the translation

is of length less than 1. Also, if f(z) = 2Zn-o anZn and a translation of

D of length Ô does not meet D, then |a„| ¿eo/ir for » = 1, 2, 3, • • • ,

and E»"-ikl2 = 52-

Lemma 1. If D is the image of \z\ <1 under an analytic function f(z)

and if D+bC\D = 0, then, as n varies over the integers, the sets

{D+nb} are pairwise disjoint.

Proof. A consideration of the functions f(rz), where 0<r<l,

shows that we may assume that/(z) is analytic for \z\ ¿1. The case

of constant functions is trivial. Also, it suffices to prove the lemma

only in the case where b is real and positive.

If m and » are unequal integers, say m>n, then D+mbC\D+nb

= 0 is equivalent to D+lbC\D = 0 for some natural number I,

namely l = m—n. Therefore, an inductive argument establishes the

lemma once we prove: for each natural number », D + (n + l)bHiD

9^0 implies that either D+bC\D^0 or D+nbC\D^0.
Let » be any natural number and suppose that wiQD+(n+l)bC\D.

We consider the following curves and points: Li and P2 are the lines

of support of D parallel to the real axis with Li "below" L2; w2 is a

boundary point of D on Pi, w3 = Wi+b, wt = Wi+(n+l)b; w& is a

boundary point of D+b on P2; a is a curve ordered from wi to w2 and

lying in D except for a/2; ß is a curve ordered from wK to wi and lying
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in D+(n+1)& except for wt; 7 is a curve lying in D+b except for its

endpoints, w3 and w6; K is a circle w = w3+rea, 0^0^27r, where

0<r<6; Ki is the upper half of K and K2 is the lower half of K;

Wt=Wi—r, Wt = Wz+t; h is the line segment from w2 to w6, /2 is the

line segment from w? to wt; Si = h+K2+l2+ß+a, b2 = k — Ki+l2

+ß+a.

Let n(b, w) denote the winding number of the closed curve 5 with

respect to the point w not on 8. Then n(82, w3) =0, for w3 is in the un-

bounded component of the complement of ô2, and thus n(5i, w3)

= n(ô2, w3) +n(K, w3) = n(K, w3) = 1. Also, m(5i, ws) = 0. The curves 7

and ôi must intersect, otherwise n(5i, w) would be continuous on 7,

take on only integral values, and assume at least two different values.

This point common to 7 and 5i must be on ß+a, and it is neither w2

nor a>4. Therefore, either D+bC\D9i0 or D+bC\D + (n + l)b^0.

The second possibility is equivalent to D+nb(~\Dj¿0.

Notation. To each set of complex numbers D we define another

set H in the following way. Let E denote the complement of D in the

extended plane, and let F he the component of E containing 00. Let

G denote the complement of F in E, and set H = D\JG. G consists of

the "holes" in D so that H "fills in" D.

Lemma 2. If D is a domain then H is a simply connected domain.

Proof. F is closed, since it is a component of the closed set E.

Therefore, H, the complement of F, is open.

The lemma is easy to prove if G is void. Otherwise, each component

of G, say Ga, has a finite boundary point. Such a point belongs to Ga

and is a boundary point of D, and consequently Ga meets the closure

of D. Therefore, since D and Ga are connected, Ha = DKJGa is con-

nected. Then H is connected, for H=Ua Ha, and the sets {Ha} are

connected and pairwise have common points. This completes the

proof that H isa domain. Also, H is simply connected since F is con-

nected in the extended plane.

Lemma 3. Let D be the image of \z\ <1 under an analytic function

f(z), and let D' = aD+b and H' = aH+b, where \a\ =\.IfDC\D' = 0
then HCMI'' = 0'.

Proof. We assume that G is nonvoid, otherwise the lemma is

trivial. This also takes care of constant functions so that henceforth

D is a domain.

A consideration of the functions/(rz), where 0<r<l, shows that

we may assume that/(z) is analytic for |z| :§1.

First we shall show that there is a point in D that is not in G',
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where G' — aG+b. Let d(A) denote the diameter of the set A. Sup-

pose wi and Wi are points on the boundary of G satisfying d(G)

— | Wi—Wi\, and let L be the ray beginning at wi, that, if extended

to a full line, would pass through w2. There are points on L belonging

to F, for D is bounded and wi is the only point both on L and in G.

Therefore, since P and G are separated there is a point w% that lies

on L, is a boundary point of P, and is different from wi. Thus, d(G)

< | w%—Wi\. Also, | w3—Wi\ ¿d(D), for w2 and w% are boundary points

of D. This proves that d(G)<d(D). But d(G)=d(G') since \a\ =1,
and thus ¿(C) <d(D). This implies that there is at least one point

in D that is not in G'.

We will show that Df~\G' = 0. On the contrary, suppose that

WiQDi\G'. Let w2 be any point such that WiQD and w2^G', and

let a be a curve lying in D with the endpoints wi and w2. Since WiQG'

and w2^G' there is a point w% such that «/8 is on a and w3 is a bound-

ary point of G'. Thus, w% is a boundary point of D' and WtQD. Be-

cause of the openness of D this contradicts DC\D' j£ 0.

The roles of D and P' are interchangeable. In particular, the con-

ditions D' = aD+b and |a|=l are equivalent to the conditions

D=a'D'+b' and \a'\ =1. Thus, by interchanging D and D' and G
and G' in our previous argument we obtain D'(~\G = 0.

The lemma is proven once we show that GC\G' = 0. On the con-

trary, suppose that GC\G' 7^0. Then GC\G' has a boundary point

w\. Because of the symmetry in the roles of G and G' we may assume

that Wi is a boundary point of G. Then wi is also a boundary point of

D. Let Wi be any point such that w2QD and w2(£G', and let a be a

curve having endpoints wi and w2 and lying in D except for w\. Let

G" be the component of G' containing wi, and set E'=aE+b, where

E is defined in the Notation previous to Lemma 2. If a does not inter-

sect D' then G"\Ja is a connected subset of £', and this violates the

maximality of the component G", for WiQa and WiQ-G". There-

fore, there is a point that lies on a and is in D', and it is not Wi. This

contradicts DC\D' = 0.

Theorem 1. Let D be the image of \z\ < 1 under an analytic function

f(z) =ao+zB+a„-nZn+1+ • • • . Each translation ofD of length less than

x/2 meets D.

Proof. Suppose that D+bC\D = 0. With a = l Lemma 3 implies

that H+bi~\H= 0, and, in particular, H is not the whole plane. Ac-

cording to Lemma 2, H is a simply connected domain. Therefore,

there is a function g(z) =bo+bu+b2z2+ • • ■ analytic and univalent

for \z\ <1 and mapping \z\ <1 onto P2so that g(0) =/(0). Then/(z)
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is subordinate to g(z), and consequently there exists a function <p(z)

= ciz+c2z2-r- • • • that is analytic and satisfies \<f>(z)\ <1 for |z| <1

and such that/(z) =g(d>(z)). Using the form oif(z),f(z) =g(dy(z)) and

015^0 one obtains successively Ci = 0, c2 = 0, • • ■ , cn_i = 0, c„oi = l.

The inequality |c„| ^1 implies that |&i| 2:1.

Since H+bC\H= 0 Lemma 1 may be applied to H, and this im-

plies that the function h(z) = (2iri/b)g(z) assumes no pair of values

differing by an integral multiple of 2iri. Together with the fact that

h(z) is univalent for | z| < 1, this shows that the function k(z) =eh(-z) is

univalent for |z|<l. Also, the function l(z) = (k(z)-k(0))/k'(0)

= z-f-a*2Z2+ • • • is analytic and univalent for |z| <1, and l(z)

¿¿-k(0)/k'(0) because k(z)^0. Since k(0)/k'(0) =b/2iribi an ap-

plication of the 1/4-theorem to l(z) implies that |o/27rî0i| ^1/4,

\b\ 2r(7r/2)|oi|. Using \bi\ 2:1 we obtain \b\ ^ir/2, and this proves

the theorem.

Knowing the functions for which the 1/4-theorem is precise and

those for which \cn\ ^ 1 is precise one can show that this theorem is

exact only for the functions/(z) = (ê/2) log [(l + ezn)/(l — ez") ] where

I e| =1. These functions map | z| < 1 onto a strip of width ir/2.

Theorem 2. Let D be the image of \ z\ <1 under an analytic function

f(z)=zn+an+izn+1+ • • ■• . Each domain obtained by rotating and

translating D meets D, if the translation is of length less than 1.

Proof. Suppose that aD+bC\D = 0 where |a| =1. Because of

Lemmas 2 and 3 the argument given in the proof of Theorem 1 shows

that there exists a function g(z) =biZ+biZ2+ • • • analytic and uni-

valent for I z| < 1 and mapping | z| < 1 onto H such that | &i| 2:1, and

aH+bC\H=0.
The functions g(z) and h(z)=ag(z)+b are univalent and have no

values in common. The same properties are held by the functions

G(z) = l/g(z)=^_,/z+E;-i^n2" and H(z) = l/h(z) = E»"-o Bnz\
and therefore E-T-o «(M»| 2+|-B„|2) á \A-i\2 [4, p. 226, problem

14]. In particular, | Bi\ ^*\A-\\, and from this we obtain \b\ 2: | bi\,

since Bi= —abi/b2, A-i = l/bi and | a| =1. Because | ¿>i| 2:1 this shows

that \b\ 2:1, and this proves the theorem.

It is not difficult to show that this theorem is sharp only for the

functions/(z) =zn/(l+e2n) where |e| =1. Each such function is ex-

tremal, since it maps |z| <1 onto a half plane bounded by a line

that is tangent to the circle | w\ = 1/2.

Lemma 4. Let D be the image of \z\ <1 under an analytic function,

and suppose that a translation of D of length ô does not meet D. Then
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each line parallel to the direction of translation intersects D in a set whose

linear measure does not exceed S.

Proof. It suffices to consider the case where D+b(~\D = 0, b is

real and positive and the line in question is the x-axis. Let A denote

the intersection of D with the x-axis and let m (S) denote the measure

of the set of real numbers S. Except for the trivial cases where the

function is constant or A is void, A is an open set of real numbers,

and therefore A — U"_! 2„ where each 2„ is an open interval. D+bC\D

= 0 implies that m(I„)¿b for each ». If In does not contain an

integral multiple of b then there is an integer «' such that the set

In =In+n'b lies in the interval 0¿x¿b. If 2n contains a multiple

of b, say n'b, then the point n'b breaks up 2„ into two intervals, Ji

and Ji, so that // = J\ — (»' — l)b and J{ =Ji — n'b lie in the interval

0¿x¿b. In this case let 2„' = J{ KJJÍ. Then, for all », 2„' lies in the

interval 0¿x¿b, and w(2„') =m(In). According to Lemma 1 the sets

{in}   are   pairwise   disjoint,   and   therefore   m(A) = 2Zn-i f»(2n)

= ¿T-i *»(/»')=&•

Theorem 3. Let D be the image of \z\ < 1 under an analytic function

/(z) = 2Z"-o anZn. If a translation of D of length 8 does not meet D, then

(1) | an |  ¿ (e/x)S,   for »èl,

(2) ¿ |a„|2 ¿Ô2.
n-l

Proof. Suppose that D+bC\D — 0 and \b\ =8. Let z be any com-

plex   number   such   that   |z|  < 1   and f'(z) j± 0,   and   set   F(w)

=f((w+z)/(l+zw))=Ao+AiW+ ■ ■ ■ so that Ai=f'(z)(l- |z|2).

The function G(w) = F(w)/Ai maps  \w\ <1 onto the domain D*

= D/Ai so that D* + (b/Ai)C\D* = 0. Applying Theorem 1 (with

» = 1) to G(w) we obtain \b/Ai\ air/2, and therefore

(3> l/,w|s7r^üF'

This estimate also holds if f'(z) = 0.
Using (3) and the formula

«a„ =- I        -dz
2wi J |2|_r     zB

we obtain »|a„| ^(2/x)5/(l— r2)r(n_1), valid for »^1 and for each

r satisfying 0<r<1. For «>1 the choice of r such that r2 = (« —1)

•(m + 1)-1 gives the estimate
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. ô  n + \¡ 2   \(»-o/2
'»I    =2

7T

+ 1/ 2   \<

—(1 + —r)»    \      « — 1/

The function of w on the right of this inequality increases for n > 1 and

approaches be/ir as «—><». Therefore, |a„| <(e/w)b for «2:2. For

« = 1 we have the sharp estimate |ai| ^(2/7t)5.

To prove (2) we may assume that f(z) is not a constant. Let g(z)

= En-o°nZn be a function analytic and univalent for |z| <1 and

mapping | z| < 1 onto H so that g(0) =/(0). Since f(z) is subordinate

to g(z) for | zJ < 1 it follows that

(4) E   |«.|Vá   E   |0n|V2"
n=l n-1

for each r satisfying 0<r<l [3, p. 484, Theorem 2 with k = 2].

Lemma 3 (with a = l) implies that H+bC\H=0 so that the
estimate (3) also applies to g'(z). Therefore, if z = reie then

I g(z) - g(0) |  = I f 'g'(w)dw \ú(T\ g'(e»t) | dt
\ J o Jo

sfr!_L
J 0     x   1 —

Ô i + r
— dt = — log-
t2 r        1 - r

Thus, g(z) maps |z| ^p onto a set 5 contained in a circle of radius

R = (b/ir) log [(l+p)/(l—p)]. Together with Lemma 4, this implies

that the area of 5 satisfies A ^ 2ÔR and this inequality is equivalent to

A    ,     ,            252        1 + p
(5) !rE«l*»|V"á-log

n-l IT 1   — p

Expressing the right side of (5) in a series in p, dividing both sides

by p and integrating from 0 to r, we obtain

» 862   "       r2n+1

(6) Ek|v»á — Er-—■
n=l T2   „_0   (2W + l)2

Because of (4) this shows that

« gt2    oo rin+l

(7) ElanlVg — E^r—tt¡-
n=l IT2   n-0   (2» + l)2

Using r<l and ET-o l/(2»+l)*=ir2/8 we obtain

(8) E   klV^O2,
n-l
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and (2) follows from (8) by letting r—*l.

Remarks. 1. Theorem 1 can be proved using either Lemma 1 or

Lemma 4 and results obtained by the principle of symmetrization

(see [2, Theorems 4.10 and 4.15]).

2. Theorem 3 should be compared with the following: if f(z)

= 2Zm-oanZn is analytic for \z\ <1, and if the values of/(z) lie in a

strip of width Ô, then |an| ^(2/x)S for «¿1, and 2ZÜ-1 |an|2^82/2

(see: [5, p. 130, problem 238], [6, Theorem 10; 7]).

3. In [l] (see Theorem 3), the following is proved: if f(z) = zZm-oanZn

is analytic for \z\ < 1, and if the image domain D does not contain

arbitrarily large circles, then the sequence {an} is bounded. This can

be improved to an—»0 as »—»00 in the case where H does not contain

arbitrarily large circles. This is an immediate consequence of the con-

vergence of 2Zn-o \an\2, and this can be proven using an argument

like that given in Theorem 3 with the fact that | g'(z) \ = 0((1 — \z\ )_1)

[l, p. 431, (3.3)], where g(z) is the function in Theorem 3.
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