THREE RESULTS FOR LOCALLY COMPACT GROUPS CONNECTED WITH THE HAAR MEASURE DENSITY THEOREM

BRUNO J. MUELLER

In [6] I have given a generalization of the Lebesgue measure density theorem to the Haar measure on a locally compact group. A slight modification of the argument given there yields the following:

THEOREM A. Let A be a σ -bounded subset and μ a left-invariant Haar measure of a locally compact group G. Then there exists a sequence U_n of bounded measurable neighborhoods of the unit e of G such that $\mu^*(A \cap U_n x)/\mu(U_n x) \to 1$, $n \to \infty$ for almost all x out of a measurable cover of A. The sequence U_n may be chosen out of a given basis of bounded measurable neighborhoods and simultaneously for a countable family of sets A.

1. A. Beck, H. H. Corson and A. B. Simon [1] have considered the inner points of a product AB of two subsets of a locally compact group. They prove that int(AB) is not empty whenever $\mu(A) > 0$, $\mu^*(B) > 0$. The following theorem shows that int(AB) is quite large.

THEOREM 1. Let A, B be σ -bounded subsets of a locally compact group G, A measurable and C a measurable cover of B. Then there exist subsets A^* , C^* of A, C equal in measure such that $A^*C^*\subset \operatorname{int}(AB)$.

PROOF. By Theorem A we choose a sequence U_n of compact neighborhoods of e for A^{-1} and B. We get

$$\frac{\mu(A^{-1}a \cap U_n)}{\mu(U_n)} = \frac{\mu(A^{-1} \cap U_n a^{-1})}{\mu(U_n a^{-1})} \to 1, \qquad \frac{\mu^*(Bb^{-1} \cap U_n)}{\mu(U_n)} \to 1$$

for almost all $a \in A$, $b \in C$. Let A^* , C^* be the sets of those $a \in A$, $b \in C$ for which these limits are actually 1. Suppose $a \in A^*$, $b \in C^*$ and $ab \in int(AB)$. For every neighborhood V of e there exists $x \in V$, $exb \in AB$. Consequently $ext{A}^{-1}ax \cap Bb^{-1} = \emptyset$ and

$$\mu^*(U_n V) \ge \mu(A^{-1}ax \cap U_n V) + \mu^*(Bb^{-1} \cap U_n V)$$

$$\ge \mu(A^{-1}ax \cap U_n x) + \mu^*(Bb^{-1} \cap U_n)$$

$$= \mu(A^{-1}a \cap U_n)\Delta(x) + \mu^*(Bb^{-1} \cap U_n).$$

If V is a small enough neighborhood of e, it follows that $\Delta(x)$ is arbitrarily close to 1, and that $\mu^*(U_n V)$ is arbitrarily close to $\mu(U_n)$

Received by the editors January 15, 1965.

for any fixed n since each U_n is compact and μ is regular. Thus, for each n,

$$\mu(U_n) \ge \mu(A^{-1}a \cap U_n) + \mu^*(Bb^{-1} \cap U_n).$$

However, for n large enough, both

$$\frac{\mu(A^{-1}a \cap U_n)}{\mu(U_n)} \quad \text{and} \quad \frac{\mu^*(Bb^{-1} \cap U_n)}{\mu(U_n)}$$

are greater than 1/2, yielding the contradiction

$$\mu(U_n) \ge \mu(A^{-1}a \cap U_n) + \mu^*(Bb^{-1} \cap U_n) > \mu(U_n).$$

REMARK. The theorem yields explicit estimates of the measure of int(AB). For $\mu(A) > 0$ and $a \in A^*$ we have

$$\mu(\text{int}(AB)) \ge \mu^*(A^*C^*) \ge \mu(aC^*) = \mu(C^*) = \mu^*(B).$$

Other estimates for $\mu(AB)$ (e.g. M. Kneser [4]) can be used in the same manner.

2. On the basis of Theorem A I have studied *e-joint semigroups* in locally compact groups [7]; these are semigroups N such that $\mu_*(N \cap U) > 0$ for all neighborhoods U of e. They have the fundamental property that their boundary $\overline{N} \setminus \operatorname{int}(N)$ is of measure zero.

M. Zorn [2, p. 157] has proved the following:

THEOREM B. If N is a semigroup in a topological group which is of the second category at e and satisfies the condition of Baire, then $int(N) = int(\overline{N})$ and int(N) is dense in N.

THEOREM 2. A semigroup N in a locally compact group G is e-joint if and only if it is of the second category at e and satisfies the condition of Baire.

PROOF. In a locally compact group G every nonempty open set A is of the second category. For suppose $A = \bigcup_{i=1}^{\infty} A_i$, A_i nowhere dense in G. For each i and each nonempty open set U there exists a nonempty bounded open set V with $\overline{V} \subset U$, $\overline{V} \cap A_i = \emptyset$. Starting with $V_0 = A$ we construct a sequence of nonempty bounded open sets V_n , $n \ge 1$ with $\overline{V}_n \subset V_{n-1}$, $\overline{V}_n \cap A_n = \emptyset$. They form a filter-basis on the compact set \overline{V}_1 having a cluster point $x \in \overline{V}_1 \subset V_0 = A$, $x \in \overline{V}_n$, $n \ge 1$. This implies the contradiction $x \notin A_n$, $n \ge 1$ and $x \notin A$.

If N is e-joint, $\mu(\text{int}(N) \cap U) = \mu(N \cap U) > 0$ for all open neighborhoods U of e; hence $\text{int}(N) \cap U$ is of the second category, and so is N at e. Further, as the measure of the boundary of N is zero, the boundary has empty interior; and that implies the condition of Baire.

Conversely, if the conditions of Theorem B hold for N, we have $e \in \overline{N} = (\text{int}(N))^-$, therefore $\text{int}(N) \cap U \neq \emptyset$ for all open neighborhoods U of e and $\mu_*(N \cap U) \ge \mu(\text{int}(N) \cap U) > 0$, so N is e-joint.

3. A subadditive function f on a locally compact group G is a function whose values are real or $\pm \infty$ and which satisfies $f(xy) \leq f(x) + f(y)$. Such functions have been studied by E. Hille and M. Zorn [3], [2], R. A. Rosenbaum [8] and others, mainly in connection with semigroups.

With a subadditive function f there are associated the functions $f_*(x) = \lim \inf_{y \to x} f(y)$ and $f^*(x) = \lim \sup_{y \to x} f(y)$ which are subadditive, lower resp. upper semicontinuous and satisfy $f_* \le f \le f^*$.

THEOREM 3. Let f be a subadditive function on a locally compact group G satisfying $\lim \inf_{x\to 0} f^*(x) \leq 0$. Then f is continuous almost everywhere.

PROOF. Let R be the additive group of the real numbers and $N \subset G \times R$ the set $\{(x, \alpha) | f(x) \leq \alpha\}$. N is a semigroup, $\operatorname{int}(N) = \{(x, \alpha) | f^*(x) < \alpha\}$ and $\overline{N} = \{(x, \alpha) | f_*(x) \leq \alpha\}$. The condition $\lim \inf_{x \to e} f^*(x) \leq 0$ implies (and is actually equivalent to) the e-jointness of N. Hence the boundary of N is of measure zero, and this measure is equal to $\int_G (f^*(x) - f_*(x)) d\mu$. Consequently $f_*(x) = f^*(x)$ almost everywhere.

REMARKS. If $\lim \inf_{x\to c} f^*(x) > 0$, f may be discontinuous everywhere.

lim $\inf_{x\to e} f^*(x) \le 0$ implies = 0 or $= -\infty$. If it is $= -\infty$, f may be described as follows: There exists an e-joint semigroup N in G (whose boundary is of measure zero) such that $f(\operatorname{int}(N)) = -\infty$, $f(\operatorname{int}(N')) = +\infty$.

References

- 1. A. Beck, H. H. Corson and A. B. Simon, The interior points of the product of two subsets of a locally compact group, Proc. Amer. Math. Soc. 9 (1958), 648-652.
- 2. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1948.
- 3. E. Hille and M. Zorn, Open additive semi-groups of complex numbers, Ann. of Math. 44 (1943), 554-561.
- 4. M. Kneser, Summenmengen in lokalkompakten Abelschen Gruppen, Math. Z. 66 (1956), 88-110.
- 5. E. J. McShane, Images of sets satisfying the condition of Baire, Ann. of Math. 51 (1950), 380-386.
- 6. B. Mueller, Eine Verschaerfung fuer Abschaetzungen von Summenmengen in lokalkompakten Gruppen, Math. Z. 78 (1962), 199-204.
- 7. ——, Halbgruppen und Dichteabschaetzungen in lokalkompakten abelschen Gruppen, J. Reine Angew. Math. 210 (1962), 89-104.
 - 8. R. A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227-247.

University of Mainz, Germany

¹ With $(+\infty)+(-\infty)=+\infty$.