
THE SUMMATION OF CERTAIN SERIES OF
INFINITE REGRESSIVE ISOLS1

F. J. SANSONE

1. Introduction. Denote the set of all non-negative integers by e,

the collection of all isols by A, and the collection of all regressive isols

by AR. If / is a function, we denote the range of / and domain of /

by pf and 5/ respectively. Dekker, in [l], defined and studied an

infinite sum of non-negative integers. In this paper, we consider an

infinite sum of infinite, regressive isols of the form T—k for some

TQAR-e.

2. Summary. We use the well-known pairing function j(x, y) which

maps e2 one to one onto e and the functions k(z), l(z) such that

j(k(z), l(z)) =z. We also employ the mapping $/, introduced in [ó] as

well as the partial ordering ¿* of A, defined in [2]. For kQe and /„

a regressive function, the set (tk, tk+i, tk+i, • • • ) is denoted by ptn+k.

Definition. Let T and U be infinite, regressive isols and o„ a re-

cursive function. Then

to

22 (T - an) = Req U j(uk, ptn+aW),
u *=o

where uk and /„ are any regressive functions ranging over sets in U

and T respectively.

The principal results of this paper are as follows. Let o„ be a strictly

increasing, recursive function. Then for T, UQAR — e,

£ (T - an) = £ (T - an),    where    V = min(*.(r), U).
v v

Moreover, with respect to the regressive isol V, the sum can be dis-

tributed over the difference T—an.

We note here several properties of the sum. It is readily shown that

if tn, t* are any two regressive functions ranging over sets in T and

uk, u* are any two regressive functions ranging over sets in U, then

00 CO

U   j(uk,ptn+a{k))^ U   j(uk, pí„+0(i)).
Jb-0 *-0
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1 The results in this paper are contained in the author's doctoral dissertation

written at Rutgers, the State University, under the direction of Professor J. C. E.
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Hence the sum is uniquely defined. Moreover, the sum depends only

on £7 and the infinite sequence of isols, { T—an}, and not on the choice

of T itself, for it is easily proved that for U, TEAr — e and k any inte-

ger such that ßn+fe^O for all »,

£ ((7 + k) - (an + k)) = £ (T - aH).
u u

It is also apparent that for T, UEAr — 6, the sum, £r/ (T—an)EA.

3. Principal results. If tn is a regressive function having the regress-

ing function p(x), we make use of the partial recursive extension

p*(x) of r1, defined by p*(x) = (py) [p"+l(x) =p"(x)].

Theorem 1. Let o„ be a strictly increasing, recursive function. Then

for T, UEAR — e,

£ (T - an) = £ (7 - an),    where    V = min($<1(7), 17).
u v

Proof. We note that since a„ is strictly increasing and recursive,

d>0(r) is a regressive isol and hence V is well defined and is also

regressive. Let tn, uk be regressive functions ranging over sets in T

and U respectively. By definition :

oo

(1) £ (T - an) = Req U j(uki ptn+a(k)),
U ¡fc-0

«3

(2) £ (T - a„) = Req U j(j(ta(k), uk), ptn+a{k)).
v *-o

Denote the sets appearing on the right in (1) and (2) by a and ß re-

spectively.

Let p(x) and q(x) be regressing functions of the regressive functions

tn and uk respectively. Define

f(¿) = j[j(pp"^-a^n(z), k(z)), i(z)].

Let

g(z) = ;(/*(*), l(z)).

Clearly, both / and g are partial recursive functions. For zEoc,

p*l(z) and aq*k(z) are defined, and aq*k(z) ^p*l(z). Hence aEof. To

verify that/(a) =ß, it is sufficient to note that for zEct, there exists

m such that k(z) =um and l(z) =/a(m)+, for some sEe. Hence

¿*»IC*«*t<.)/(g) = io(m).
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It readily follows that/(a) =ß. That/ is 1-1 on a is a consequence of

the fact thatjOe, y) is 1-1. Clearly, ßQ8g, g(ß) =a and g is 1-1 on ß.

Furthermore, for zQa, gf(z)=z. An application of Proposition 1 of

[l] completes the proof.

Corollary. Let an be a strictly increasing, recursive function. Let

T, U, VQA.R-6. Then

[#.(f) Ú * U, *.(T) ¿ * V] => £ (T - an) = Z (T - aB).
U V

Proof. Since$a(T)¿*U, min($>0(T), U) =*.(!). Since *m(T)£*V,

min ($a(T), V)=$a(T). The result follows by applying the theorem

to both sums.

Theorem 2. Let an be a strictly increasing, recursive function. Then

for T, UQAa-e,

£ (T - O = TV - £ an,    where    V = min(*.(r), £/).
F V

Proof. It suffices to prove

(1) Z (T - an) + E «» = it.
F V

Let tn and w* be regressive functions ranging over sets in T and U

respectively. Let

00

« =   U   j[i('o(*)i M*)> P'»+«(*>],
i-0

CO

/3 = U j[j(ta(k), uk), v(ak)],
Jt—0

7 =y[pÍ(<a(t), «i), P<n],

00

5 = U j[j(ta(k), Uk), tv(ak)\.
*-0

Here, v(ak) denotes the set (0, 1, • • • ,ak — l). By definition, we have:

£ (7 - a.) - Req a,

E a„ = Req ß,
v

VT = Req y.
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Since o„ is recursive, a\ ô. We also have a+d=y. Hence to prove (1),

it suffices to show that 0~5. Let p(x) be a regressing function of the

regressive function /„ and let p*(x) be related to p(x) in the usual

manner. Define

f(z) = j[k(z), í»*«<«>-¡<'>¿¿(2)],

g(z)=j(k(z),p*l(z)).

Clearly, both / and g are partial recursive functions. Since for zEß,

p*kk(z) —l(z) is defined and kk(z) Eptn, we have ßQSf. For zEß, there

exists«» such that kk(z) = taim) and l(z) =am — (s+\) for some5Ev(am).

Hence

KM(,)-,(,)(**(*))   =  P"(m)-a™+'+l(l*w)   = koO-C+l)

and/(j8) = 8. Clearly/ is 1-1 on ß. The function g(z) obviously has the

properties:

« C Sg,       g(5) = ß,    and   g is 1-1 on 5.

Since for zEß, gf(z) =z, we have ßc^o.

Combining the two preceding theorems, we obtain :

Theorem 3. Let an be a strictly increasing recursive function. Then

for T, UEAB-e,

£ (T - an) - TV - £ an,    where    V = win(*a(T), U).
a v

The following are immediate corollaries of Theorem 3.

Corollary 1. Let an be a strictly increasing, recursive function. Let

T, UEAR — e. Then

U á * *«(r) =» £ (2- - an) = TU - £ a..
u v

Corollary 2. Let an be a strictly increasing, recursive function. Let

T, UEAR-€. Then

*.(20 ^ * V=> £ (T - an) = TMT) -   £ an.
V *.(T)

Corollary 3. Let a„ be a strictly increasing, recursive function and

let TEAR—e. Then

£ (T - aR) = r*.(20 -   £ an.
T *a(T)
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4. Remarks. We state here several other results whose hypotheses

are more restrictive than those of Theorems 1 and 2. Their proofs

will be omitted.

Theorem 4. Let T, UQAr — e. // an is a recursive function such that

(V») [a„^ra+l], then

ü ¿ * T=> Y. (T - O = TU - £ a-
u u

Corollary 1. Let TQAR — e. If an is a recursive function satisfying

the hypothesis of Theorem A, then

Y(T-an) = T2-Y, <V
T T

Corollary 2. Let TQAR — e. Then

£: T + (T - 1) + (T - 2) + • • - - £: 1 + 2 + 3 + • • •.
T T

The second corollary can also be obtained by an application of Theo-

rem 3.

For every increasing, unbounded, recursive function c„, we define

»n = (py)[av > n].

The function <z„ is clearly partial recursive. Moreover, since an is

unbounded, it follows that än is everywhere defined and hence recur-

sive.

Theorem 5. Let an be an increasing, recursive function such that

Ofn)[an^n]. Then for T, UQAR — t,

T¿*U=*Y,(T-an) = I>„.
U T

Corollary. Let an be an increasing, recursive function such that

(Vw)[a„^«]. Then for TQAr — €,

2 (T - On) = Y ân.
T T

Results similar to those in Theorems 1 and 2 can be obtained for

sums whose terms consist of a product of factors. For T, U, VQAr — e

and c„, bn recursive functions, we define
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£ (T - an)(U - bn) = Req U j(vk, j(ptn+a0c), pK„+6<*>)),
V i-0

where t, u, v are regressive functions ranging over sets in T, U, V

respectively.

Theorem 6. Let an and bn be strictly increasing, recursive functions.

Let T, U, VEAB-eand M = mm($a(T), <&([/), V). Then

£ (T - an)(U - bn) = £ (T - an)(U - bn).
V M

Morever, with respect to the isol M, the sum can be distributed over the

product to obtain MTU— T^M bn— U^m a„+ £m anbn.
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