THE SUMMATION OF CERTAIN SERIES OF INFINITE REGRESSIVE ISOLS ${ }^{1}$

F. J. SANSONE

1. Introduction. Denote the set of all non-negative integers by ϵ, the collection of all isols by Λ, and the collection of all regressive isols by Λ_{R}. If f is a function, we denote the range of f and domain of f by ρf and δf respectively. Dekker, in [1], defined and studied an infinite sum of non-negative integers. In this paper, we consider an infinite sum of infinite, regressive isols of the form $T-k$ for some $T \in \Lambda_{R}-\epsilon$.
2. Summary. We use the well-known pairing function $j(x, y)$ which maps ϵ^{2} one to one onto ϵ and the functions $k(z), l(z)$ such that $j(k(z), l(z))=z$. We also employ the mapping Φ_{f}, introduced in [6] as well as the partial ordering $\leqq *$ of Λ, defined in [2]. For $k \in \epsilon$ and t_{n} a regressive function, the set $\left(t_{k}, t_{k+1}, t_{k+2}, \cdots\right)$ is denoted by ρt_{n+k}.

Definition. Let T and U be infinite, regressive isols and a_{n} a re cursive function. Then

$$
\sum_{U}\left(T-a_{n}\right)=\operatorname{Req} \bigcup_{k=0}^{\infty} j\left(u_{k}, p t_{n+a(k)}\right),
$$

where u_{k} and t_{n} are any regressive functions ranging over sets in U and T respectively.

The principal results of this paper are as follows. Let a_{n} be a strictly increasing, recursive function. Then for $T, U \in \Lambda_{R}-\epsilon$,

$$
\sum_{U}\left(T-a_{n}\right)=\sum_{V}\left(T-a_{n}\right), \quad \text { where } \quad V=\min \left(\Phi_{a}(T), U\right)
$$

Moreover, with respect to the regressive isol V, the sum can be distributed over the difference $T-a_{n}$.

We note here several properties of the sum. It is readily shown that if t_{n}, t_{n}^{*} are any two regressive functions ranging over sets in T and u_{k}, u_{k}^{*} are any two regressive functions ranging over sets in U, then

$$
\bigcup_{k=0}^{\infty} j\left(u_{k}, \rho t_{n+a(k)}\right) \simeq \bigcup_{k=0}^{\infty} j\left(u_{k}^{*}, \rho t_{n+a(k)}^{*}\right)
$$

[^0]Hence the sum is uniquely defined. Moreover, the sum depends only on U and the infinite sequence of isols, $\left\{T-a_{n}\right\}$, and not on the choice of T itself, for it is easily proved that for $U, T \in \Lambda_{R}-\epsilon$ and k any integer such that $a_{n}+k \geqq 0$ for all n,

$$
\sum_{U}\left((T+k)-\left(a_{n}+k\right)\right)=\sum_{U}\left(T-a_{n}\right) .
$$

It is also apparent that for $T, U \in \Lambda_{R}-\epsilon$, the sum, $\sum_{U}\left(T-a_{n}\right) \in \Lambda$.
3. Principal results. If t_{n} is a regressive function having the regressing function $p(x)$, we make use of the partial recursive extension $p^{*}(x)$ of t^{-1}, defined by $p^{*}(x)=(\mu y)\left[p^{\nu+1}(x)=p^{\nu}(x)\right]$.

Theorem 1. Let a_{n} be a strictly increasing, recursive function. Then for $T, U \in \Lambda_{R}-\epsilon$,

$$
\sum_{U}\left(T-a_{n}\right)=\sum_{V}\left(T-a_{n}\right), \quad \text { where } \quad V=\min \left(\Phi_{a}(T), U\right)
$$

Proof. We note that since a_{n} is strictly increasing and recursive, $\Phi_{a}(T)$ is a regressive isol and hence V is well defined and is also regressive. Let t_{n}, u_{k} be regressive functions ranging over sets in T and U respectively. By definition:

$$
\begin{align*}
& \sum_{U}\left(T-a_{n}\right)=\operatorname{Req} \bigcup_{k=0}^{\infty} j\left(u_{k}, \rho t_{n+a}(k)\right), \tag{1}\\
& \sum_{V}\left(T-a_{n}\right)=\operatorname{Req} \bigcup_{k=0}^{\infty} j\left(j\left(t_{a(k)}, u_{k}\right), \rho t_{n+a(k)}\right) . \tag{2}
\end{align*}
$$

Denote the sets appearing on the right in (1) and (2) by α and β respectively.

Let $p(x)$ and $q(x)$ be regressing functions of the regressive functions t_{n} and u_{k} respectively. Define

$$
f(z)=j\left[j\left(p^{p} l(z)-a_{q} q^{*} k(z) l(z), k(z)\right), l(z)\right] .
$$

Let

$$
g(z)=j(l k(z), l(z))
$$

Clearly, both f and g are partial recursive functions. For $z \in \alpha$, $p^{*} l(z)$ and $a q^{*} k(z)$ are defined, and $a q^{*} k(z) \leqq p^{*} l(z)$. Hence $\alpha \subset \delta f$. To verify that $f(\alpha)=\beta$, it is sufficient to note that for $z \in \alpha$, there exists m such that $k(z)=u_{m}$ and $l(z)=t_{a(m)+s}$ for some $s \in \epsilon$. Hence

$$
p^{p^{*} l(z)-a_{q}{ }^{*} k(z) l(z)}=t_{a(m)} .
$$

It readily follows that $f(\alpha)=\beta$. That f is 1-1 on α is a consequence of the fact that $j(x, y)$ is 1-1. Clearly, $\beta \subset \delta g, g(\beta)=\alpha$ and g is 1-1 on β. Furthermore, for $z \in \alpha, g f(z)=z$. An application of Proposition 1 of [1] completes the proof.

Corollary. Let a_{n} be a strictly increasing, recursive function. Let $T, U, V \in \Lambda_{R}-\epsilon$. Then

$$
\left[\Phi_{a}(T) \leqq * U, \Phi_{a}(T) \leqq * V\right] \Rightarrow \sum_{U}\left(T-a_{n}\right)=\sum_{V}\left(T-a_{n}\right)
$$

Proof. Since $\Phi_{a}(T) \leqq * U, \min \left(\Phi_{a}(T), U\right)=\Phi_{a}(T)$. Since $\Phi_{a}(T) \leqq * V$, $\min \left(\Phi_{a}(T), V\right)=\Phi_{a}(T)$. The result follows by applying the theorem to both sums.

Theorem 2. Let a_{n} be a strictly increasing, recursive function. Then for $T, U \in \Lambda_{R}-\epsilon$,

$$
\sum_{V}\left(T-a_{n}\right)=T V-\sum_{V} a_{n}, \quad \text { where } \quad V=\min \left(\Phi_{a}(T), U\right) .
$$

Proof. It suffices to prove

$$
\begin{equation*}
\sum_{V}\left(T-a_{n}\right)+\sum_{V} a_{n}=V T \tag{1}
\end{equation*}
$$

Let t_{n} and u_{k} be regressive functions ranging over sets in T and U respectively. Let

$$
\begin{aligned}
& \alpha=\bigcup_{k=0}^{\infty} j\left[j\left(t_{a(k)}, u_{k}\right), \rho t_{n+a(k)}\right], \\
& \beta=\bigcup_{k=0}^{\infty} j\left[j\left(t_{a(k)}, u_{k}\right), \nu\left(a_{k}\right)\right], \\
& \gamma=j\left[\rho j\left(t_{a(k)}, u_{k}\right), \rho t_{n}\right] \\
& \delta=\bigcup_{k=0}^{\infty} j\left[j\left(t_{a(k)}, u_{k}\right), t \nu\left(a_{k}\right)\right] .
\end{aligned}
$$

Here, $\nu\left(a_{k}\right)$ denotes the set $\left(0,1, \cdots, a_{k}-1\right)$. By definition, we have:

$$
\begin{aligned}
\sum_{V}\left(T-a_{n}\right) & =\operatorname{Req} \alpha \\
\sum_{V} a_{n} & =\operatorname{Req} \beta \\
V T & =\operatorname{Req} \gamma
\end{aligned}
$$

Since a_{n} is recursive, $\alpha \mid \delta$. We also have $\alpha+\delta=\gamma$. Hence to prove (1), it suffices to show that $\beta \simeq \delta$. Let $p(x)$ be a regressing function of the regressive function t_{n} and let $p^{*}(x)$ be related to $p(x)$ in the usual manner. Define

$$
\begin{aligned}
& f(z)=j\left[k(z), p^{p^{*} k k(z)-l(z)} k k(z)\right], \\
& g(z)=j\left(k(z), p^{*} l(z)\right) .
\end{aligned}
$$

Clearly, both f and g are partial recursive functions. Since for $z \in \beta$, $p^{*} k k(z)-l(z)$ is defined and $k k(z) \in \rho t_{n}$, we have $\beta \subset \delta f$. For $z \in \beta$, there exists m such that $k k(z)=t_{a(m)}$ and $l(z)=a_{m}-(s+1)$ for some $s \in \nu\left(a_{m}\right)$. Hence

$$
p^{p^{*} k k(z)-l(z)}(k k(z))=p^{a(m)-a(m)+s+1}\left(t_{a(m)}\right)=t_{a(m)-(0+1)}
$$

and $f(\beta)=\delta$. Clearly f is 1-1 on β. The function $g(z)$ obviously has the properties:

$$
\delta \subset \delta g, \quad g(\delta)=\beta, \quad \text { and } \quad g \text { is } 1-1 \text { on } \delta .
$$

Since for $z \in \beta, g f(z)=z$, we have $\beta \simeq \delta$.
Combining the two preceding theorems, we obtain:
Theorem 3. Let a_{n} be a strictly increasing recursive function. Then for $T, U \in \Lambda_{R}-\epsilon$,

$$
\sum_{U}\left(T-a_{n}\right)=T V-\sum_{V} a_{n}, \quad \text { where } \quad V=\min \left(\Phi_{a}(T), U\right)
$$

The following are immediate corollaries of Theorem 3.
Corollary 1. Let a_{n} be a strictly increasing, recursive function. Let $T, U \in \Lambda_{R}-\epsilon$. Then

$$
U \leqq * \Phi_{a}(T) \Rightarrow \sum_{U}\left(T-a_{n}\right)=T U-\sum_{U} a_{n}
$$

Corollary 2. Let a_{n} be a strictly increasing, recursive function. Let $T, U \in \Lambda_{R}-\epsilon$. Then

$$
\Phi_{a}(T) \leqq * U \Rightarrow \sum_{U}\left(T-a_{n}\right)=T \Phi_{a}(T)-\sum_{\Phi_{a}(T)} a_{n}
$$

Corollary 3. Let a_{n} be a strictly increasing, recursive function and let $T \in \Lambda_{R}-\epsilon$. Then

$$
\sum_{T}\left(T-a_{n}\right)=T \Phi_{a}(T)-\sum_{\Phi_{a}(T)} a_{n} .
$$

4. Remarks. We state here several other results whose hypotheses are more restrictive than those of Theorems 1 and 2. Their proofs will be omitted.

Theorem 4. Let $T, U \in \Lambda_{R}-\epsilon$. If a_{n} is a recursive function such that $(\forall n)\left[a_{n} \leqq n+1\right]$, then

$$
U \leqq * T \Rightarrow \sum_{U}\left(T-a_{n}\right)=T U-\sum_{U} a_{n} .
$$

Corollary 1. Let $T \in \Lambda_{R}-\epsilon$. If a_{n} is a recursive function satisfying the hypothesis of Theorem 4, then

$$
\sum_{T}\left(T-a_{n}\right)=T^{2}-\sum_{T} a_{n}
$$

Corollary 2. Let $T \in \Lambda_{R}-\epsilon$. Then

$$
\sum_{T}: T+(T-1)+(T-2)+\cdots=\sum_{T}: 1+2+3+\cdots
$$

The second corollary can also be obtained by an application of Theorem 3.

For every increasing, unbounded, recursive function a_{n}, we define

$$
\bar{a}_{n}=(\mu y)\left[a_{y}>n\right] .
$$

The function \vec{a}_{n} is clearly partial recursive. Moreover, since a_{n} is unbounded, it follows that \vec{a}_{n} is everywhere defined and hence recursive.

Theorem 5. Let a_{n} be an increasing, recursive function such that $(\forall n)\left[a_{n} \geqq n\right]$. Then for $T, U \in \Lambda_{R}-\epsilon$,

$$
T \leqq * U \Rightarrow \sum_{U}\left(T-a_{n}\right)=\sum_{T} \vec{a}_{n} .
$$

Corollary. Let a_{n} be an increasing, recursive function such that $(\forall n)\left[a_{n} \geqq n\right]$. Then for $T \in \Lambda_{R}-\epsilon$,

$$
\sum_{T}\left(T-a_{n}\right)=\sum_{T} \bar{a}_{n} .
$$

Results similar to those in Theorems 1 and 2 can be obtained for sums whose terms consist of a product of factors. For $T, U, V \in \Lambda_{R}-\epsilon$ and a_{n}, b_{n} recursive functions, we define

$$
\sum_{V}\left(T-a_{n}\right)\left(U-b_{n}\right)=\operatorname{Req} \bigcup_{k=0}^{\infty} j\left(v_{k}, j\left(\rho t_{n+a(k)}, \rho u_{n+b(k)}\right)\right),
$$

where t, u, v are regressive functions ranging over sets in T, U, V respectively.

Theorem 6. Let a_{n} and b_{n} be strictly increasing, recursive functions. Let $T, U, V \in \Lambda_{R}-\epsilon$ and $M=\min \left(\Phi_{a}(T), \Phi_{b}(U), V\right)$. Then

$$
\sum_{V}\left(T-a_{n}\right)\left(U-b_{n}\right)=\sum_{M}\left(T-a_{n}\right)\left(U-b_{n}\right)
$$

Morever, with respect to the isol M, the sum can be distributed over the product to obtain $M T U-T \sum_{M} b_{n}-U \sum_{M} a_{n}+\sum_{M} a_{n} b_{n}$.

References

1. J. C. E. Dekker, Infinite series of isols, Recursive function theory, Proc. Sympos. Pure Math. Vol. 5, Amer. Math. Soc., Providence, R. I., 1962; pp. 77-96.
2. ——, The minimum of two regressive isols, Math. Z. 83 (1964), 345-366.
3. J. C. E. Dekker and J. Myhill, Recursive equivalence types, Univ. of Calif. Press, Berkeley, Calif., 1960.
4. A. Nerode, Extensions to isols, Ann. of Math. 73 (1961), 362-403.
5. - Extensions to isolic integers, Ann. of Math. 75 (1962), 419-448.
6. F. J. Sansone, Combinatorial functions and regressive isols, Pacific J. Math. 13 (1963), 703-707.

Case Institute of Technology

[^0]: Presented to the Society, January 24, 1964; received by the editors June 12, 1964.
 ${ }^{1}$ The results in this paper are contained in the author's doctoral dissertation written at Rutgers, the State University, under the direction of Professor J. C. E. Dekker.

