## ON THE DIOPHANTINE EQUATION $x^3+y^3+z^3=x+y+z$

## A. OPPENHEIM

1. The remarks in this note on the Diophantine equation

(1) 
$$x^3 + y^3 + z^3 = x + y + z$$

are prompted by Edgar's recent note [1]. In order "to avoid certain trivial solutions" he assumes that  $x \ge y \ge 0$ , z < 0 and  $x \ne -y$ . Using a method of S. D. Chowla and others (a reference not accessible to me) he obtains infinitely many solutions of (1) subject to the further conditions

$$(2) x+y+z=m, x+y=km, x+z\neq 0$$

in each of the following cases (i) k=3 (Chowla), (ii) k=12 (Edgar), (iii) k=16/3 (Edgar).

In this note I show that each of the trivial solutions (h, 1, -h) where  $|h| \ge 2$ , gives rise to infinitely many nontrivial solutions and that nontrivial solutions likewise generate others.

As an example the equation

$$(3) N^2 - 85M^2 = -4$$

has infinitely many integral solutions (N, M), both odd or both even. The integers

(4) 
$$x = \frac{1}{2}(M+N), \quad y = \frac{1}{2}(M-N), \quad z = -4M$$

will always satisfy (1). And for those solutions

$$x + y + z = -3M, \qquad x + y = M.$$

These solutions were obtained in fact by the method below from the nontrivial solution (5, -4, -4).

The equation

$$3N^2 - 31M^2 = -4$$

also has infinitely many solutions with M, N of like parity: the equations

$$x + y = -M, \qquad x - y = N, \qquad z = 2M$$

will yield solutions of (1). Equation (5) was derived from the trivial solution (-2, 1, 2) of (1).

The equation

Received by the editors May 19, 1965.

$$5N^2 - 62M^2 = 2$$

has infinitely many solutions in integers N(even) and M: the smallest solution appears to be (412, 117). Determine x, y, z by the equations

$$x + y = 10M$$
,  $x - y = N$ ,  $z = -7M$ :

then x, y, z are integers which satisfy (1). One solution is therefore x = 791, y = 379, z = -819.

2. Suppose that (x, y, z) is a solution of (1). Any permutation yields another solution (not necessarily distinct). Also (-x, -y, -z) is a solution. In general 12 solutions arise from a given solution.

Suppose that x+y and z are not both zero. Define integers m, n, a, c uniquely by the following equations

(7) 
$$x + y = am$$
,  $z = -cm$ ,  $x - y = n$ ,  $(a, c) = 1$ ,  $m \ge 1$ .

Then from the identity

$$4(x^3 + y^3 + z^3 - x - y - z) = m \{3an^2 + (a^3 - 4c^3)m^2 - 4(a - c)\}$$

we see that the integers (m, n)  $(m \ge 1)$  satisfy the Diophantine equation

(8) 
$$(a^3 - 4c^3)M^2 + 3aN^2 = 4(a - c).$$

Conversely, suppose that integers a and c exist such that (8) is solvable in integers  $M \neq 0$ , N with aM, N of like parity; then the equations

$$X + Y = aM$$
,  $Z = -cM$ ,  $X - Y = N$ 

give integers X, Y, Z which satisfy (1).

If in addition the integer D defined by

$$(9) D = 3a(4c^3 - a^3)$$

is positive and not a square, then the equation (8), having one solution (M, N) with aM, N of same parity, will have infinitely many such solutions, by a classical theorem on indefinite binary quadratic forms.

As an example, take the trivial solution

$$(x, y, z) = (h, 1, -h)$$

where h is an integer,  $|h| \ge 2$ . Equation (8) becomes

(10) 
$$3(h+1)N^2 - (3h^3 - 3h^2 - 3h - 1)M^2 = 4,$$
$$D = 3(h+1)(3h^3 - 3h^2 - 3h - 1).$$

It is easily seen that D>0 and that D is not a square whenever  $|h| \ge 2$ . Now (10) has the solution M=1, N=h-1: it has therefore infinitely many solutions such that (h+1) M, N have the same parity. I omit the proof.

Here are a few examples of (10):

$$9N^{2} - 5M^{2} = 4$$
,  $31M^{2} - 3N^{2} = 4$ ,  $3N^{2} - 11M^{2} = 1$ ,  $100M^{2} - 6N^{2} = 4$ ,  $15N^{2} - 131M^{2} = 4$ ,  $229M^{2} - 9N^{2} = 4$ ,  $18N^{2} - 284M^{2} = 4$ ,  $109M^{2} - 3N^{2} = 1$ .

3. Each solution (x, y, z) of (1) gives rise in general to three pairs of integers (a, c) and hence to three binary forms. Suppose  $(x_1, y_1, z_1)$  and  $(x_2, y_2, z_2)$  are two solutions of (1) derived from two pairs  $(N_1, M_1)$ ,  $(N_2, M_2)$ , belonging to a particular binary form corresponding to a pair (a, c): suppose also that  $(x_1, y_1, z_1) \neq (x_2, y_2, z_2)$  or to  $(-x_2, -y_2, -z_2)$ . Then the two remaining binary forms deducible from the triad  $(x_1, y_1, z_1)$  are distinct from those deducible from the triad  $(x_2, y_2, z_2)$ . In this way further sets of solutions can be generated.

As an example the trivial solution (2, 1, -2) leads to the form  $9N^2-5M^2=4$ . The solution (6, 8) of the latter equation gives the triad (15, 9, -16) which satisfies (1). This triad yields the triads (15, -16, 9), (9, -16, 15) whence we get two sets for a, c, m, n and two forms:

-1, -9, 1, 31: 
$$2915M^2 - 3N^2 = 32$$
;  
-7, -15, 1, 25:  $13157M^2 - 21N^2 = 32$ .

From these two binary forms infinitely many others can be generated, each of which will lead to solutions of (1).

4. Edgar [1] gives a solution of (1) corresponding in his notation to k = 16/3; in my notation a = 16, c = 13. The corresponding equation (8) is

$$4N^2 - 391M^2 = 1$$

which has (as Edgar says) infinitely many solutions with even N, the smallest solution yielding

$$x = 8u + v,$$
  $y = 8u - v,$   $z = 13u$ 

where u = 371133, v = 1834670. In the way described further forms can be generated from the permutations

$$(8u + v, -13u, 8u - v),$$
  $(8u - v, -13u, 8u + v).$ 

The pair (a, c) = (10, 7) is also worthy of note: it leads to the form (6) which gives rise to infinitely many solutions of (1).

Two more examples can be given of small a, c:

$$a = 14$$
,  $c = 11$ ;  $a = 64$ ,  $c = 61$ .

The first leads to the equation

$$7N^2 - 430M^2 = 2,$$

solvable infinitely often with N even, e.g. N = 2124, M = 271 whence

$$x = 2959$$
,  $y = 835$ ,  $z = -2981$ .

The second (64, 61) leads to the equation

$$(4N)^2 - 53815M^2 = 1$$

which is in fact solvably infinitely often with N even so that solutions of (1) are given by

$$x + y = 64M$$
,  $x - y = N$ ,  $z = -61M$ .

5. A difficult problem remains for consideration. Two solutions of (1) may be regarded as dependent if they can be connected by a finite number of binary forms as described above. Can simple criteria be determined for dependence? Can the independent solutions be completely specified?

I am grateful to Professor E. S. Barnes for some helpful comments.

## REFERENCE

1. H. M. Edgar, Some remarks on the Diophantine equation  $x^3+y^3+z^3=x+y+z$ , Proc. Amer. Math. Soc. 16 (1965), 148-153.

University of Malaya, Kuala Lumpur, Malaysia