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that to every sequence ai, a2, ■ • ■ (with «i= 1) of nonnegative inte-

gers there exists exactly one real number in the interval [0, 1) to

which the given sequence on, a2, ■ • •  corresponds.
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A SHORT PROOF OF AN INEQUALITY
FOR THE PERMANENT FUNCTION

PETER M. GIBSON

Let A be a substochastic matrix, i.e., a square matrix of nonnega-

tive numbers with each row sum no greater than 1. We have obtained

a lower bound for the permanent of I —A.

Theorem. If A is a substochastic matrix, then

per (I- A) It 0.

It was brought to our attention by Marcus and Mine [2] that Bru-

aldi and Newman have proved this theorem. Indeed, two proofs of

this theorem are contained in a paper that will appear in the Oxford

Quarterly [l]. The proof that we shall give, shorter than and quite

different from the Brualdi-Newman proofs, shows that this theorem

is almost a corollary of the Ryser representation of the permanent.

Let B be an w-square matrix and let Pr denote a matrix obtained

from P by replacing some r columns of B by zero columns. Let 5(Pr)

be the product of the row sums of the matrix Br. Ryser [3] has proved

that the permanent of B is given by

per (P) = 5(P0) + E (-l)5(Si) + E (-1)2S(P2) + • ■ •

+ zZi-l)n~1SiBn-i),

where E( — l)rSiB/) denotes the sum over all (") replacements of r

of the columns of P by zero columns.

Let B = I—A where A is a substochastic matrix. The ith row sum

of Br is nonpositive or nonnegative according to whether the ith

column of Pr is a zero or a nonzero column. Hence there are at least

r row sums of Pr that are nonpositive and at least ra — r that are non-

negative. Therefore
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(~iys(Br) ^ o,

per (I - A) = per (B) ^ 0.

We are indebted to Morris Newman for a preprint of [l],

Morris Newman informs me that essentially the same proof was

communicated to him independently by Hazel Perfect.
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