
ON THE INTEGRAL MODULI OF CONTINUITY IN
LP (l<p<oo) OF FOURIER SERIES WITH

MONOTONE COEFFICIENTS

S. ALJAN&C

1. Introduction and results. Let/(x) be of period 27r and integrable

Lp (1 <p< <»). The integral moduli of continuity of first and second

order of / in Lp are defined by

wp(h;f) =  sup \\f(x A- t) -/(x)||p
\i\Sh

and

«•(*;/) =   sup \\f(x A- t) Arf(x - t) - 2f(x)\\p
0<<Sft

respectively, where \\-\\P denotes the norm in Lp. The Lipschitz and

Zygmund classes Ap and A* are then defined by up(h; f) =0(h) and

°4(h;f) = 0(h) respectively.
The problem of what can be said about the integral modulus of

continuity (of first order) of the functions of the class A* (1 <p< oo)

was solved by A. Timan and M. Timan [6] for p = 2 and in the gen-

eral case by Zygmund [7] in the following way:1

(Aph\ logh\llp   for 1 < p ^ 2,
/ E AP* =» aP(h;f) g <

J UpAllogAl1'*   for 2 £p< co.

Both estimates are best possible in general. Here we shall show that

the second estimate can be improved for a special class of functions.

Theorem 1. If fELp (1 <p< oo) has a cosine or sine Fourier series

with monotone coefficients, then

/ e Ap* =» «„(*;/) ^ Aph | log h I1'".

The example of the function/(x) = 23"-i nllp~2 cos nx (1 <p< °°),

which belongs to A* and whose integral modulus up(h; f) is

> Cph\ log h\ llp. Zygmund [7] shows that the estimate of Theorem 1

is the best possible.

Recently Aljancic and Tomic [l] proved that if the sequence {pn}

satisfies an^un+i-^0 and for a fixed p (Kp< <*>)
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1 Av, Bp, ■ ■ • denote constants which depend at most on p, but not necessarily

always the same.
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(1) £ v^"p, = CXra2-1 V.)    and     { £ v^pX   " = 0(nWpJ,

then

(2) »,<rrl;f) =S Apn^'vy.n,

where / is the sum of either of the series

00 00

(3) zZ Vn cos nx   or    zZ Mn sin nx.
n=-l n=l

We shall prove here a more complete result:

Theorem 2. Let {ju„} be a sequence which is monotonically decreas-

ing to zero and such that for a fixed p (1<£ < eo)

00

(4) zZ n    pn < °o.

If f is the sum of either of the series (3), then

(5) «„(»-!;/) ^ ^n-11 £ v2p"V"} ^ +Bpi£ tT'pX **.

On account of A. Timan [5, p. 339]

(   ^-,    2j,-2 j, I ^-i     1-1/p
<   L" /■*>•> 3   Ap Zu V Pv,
\ v=l J »=1

the estimate (2) is included in that of (5). On the other hand, if

Hn = n~a with a>l — l/p/1 both (2) and (5) give the same estimate

"p(»-1;/) = 0(wx-1/p-a) = Oinx-"vpn)    when    a < 2 - l/p,

but, for a = 2 — l/p, (2) cannot be applied because of (li), whereas (5)

gives

»p(»-1;/) = Oin'1 log1'" ra) = OCra^'^log^ra).

As well as Theorem 1, the following theorem is partly based on a

special case of Theorem 2.

Theorem 3. //Mn^Mn+i—»0, //sera

(6) E ra     ai„ < oo   /or a ̂ xe(f p il < p < =0)
n-l

' a >! — !//> is necessary to guarantee the convergence of the series in (4).



i966] FOURIER SERIES WITH MONOTONE COEFFICIENTS 289

is a necessary and sufficient condition that the sum f of either of the

series (3)

(i) belongs to Ap, or

(ii) is equivalent to an absolutely continuous function whose deriva-

tive belongs to Lp.

We remark that the results of Theorems 1-3 can be extended in an

obvious manner to higher moduli and derivatives respectively. For

example, for the modulus of order k, only the first term on the right

side in (5) is to be replaced by

Ap,kn *< 2^ " M»f     •

2. Proof of Theorem 2. We note first that condition (4) is both

necessary and sufficient that fELp [8, Chapter XII, Lemma 6.6].

We shall prove the theorem for the cosine series, the proof for the

sine series being analogous.

On account of the symmetry of f(x)

\f(x + t)-f(x)\*dx\

If* f* \ lip

=    sup    \\    \f(x-t)-f(x)\*dx+  I    |/(* + 0-/(*)|p<*4     ,

the function of t in the braces on the right side being pair. Hence, it

suffices to evaluate

\f(x ± t) -f(x) \*dx\        for 0 tg h.

heth = ir/2n. Owing to (aArb)llp^allpArb1ip (p>l), we have

\f(x±t)-f(x)\*dx\

(7) '    r '   i/p

+ {fT\f(x±t)-f(x)\*dx}   P = IiA-I2.

By Minkowski's inequality

Ui/n I n-1 | p      \   lip
2 Py sm \vi sm v(x + 10    dx >

(8) J     '-1 '      }
l    fin I    co lp       s   1/p

+ \  I 2Z/i»[cosi'(x ± l) — cosi<x]    dx>      = In + In.
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As, by Holder's inequality,

n—1 / n— 1 \   l/p

zZm^Apn^\zZ^VX     ,
*-l V. c=l J

we get

/    /.i/n/n-l        \p        \   l/p /■"-!„      „     ">   1/J>

(9) /„ g 1 j J^     ( Z ^J  d*}      ̂  4,n-» j E "      vl)    ■

For the latter of the integrals in (8) we find in virtue of t^ir/ln

l    n*ln±t      oo lp        \   l/p

7i2 ^  \   I £/*„ cos j>x    dx>
{J±t y-n )

U>r/n|    co lp       \   l/p

E/^cos vx\ dx>
0        L=n \ J

I    /» 3r/2n I    oo p        \   l/p

^ (21'*+ 1)<   I £/*,cosm:    <**>
Wo \ ,-n )

/oo /» 3x/2m        I    co p        'v   l/p

5= 3 < zZ \zZP> cos vx    dx\
\ m=-n   " 3r/2C)n+l) I v=n /

As, for 37r/2(w + l) ^x^37r/2tra im=n, n + l, ■ ■ ■ ),

zZ u* cos vx   5S zZ, »' + irarVm+i ̂  Z M» + § (« + IW+i,

we see that

/12 ̂  Ap zZ mr'1 IzZv')  + BP zZ ^ V™-
m=n \ v=n      / m=n

Hardy's inequality   [3,  Chapter  IX,  Miscellaneous  theorems and

examples 346]

(10) £m-*(£ cX ^Kp£ mP~2Cl       (Cm ̂ 0, p > I),
m—l \ p=l       / m=l

with Cm = 0 for m<n and Cm = jum for w^ra, shows that the first of

these sums is majorized by the latter. Hence,

(11) /l2^5p^E/_M^        •

If  D,(#)  denotes the  Dirichlet  kernel, an   Abel   transformation
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combined with Minkowski's inequality gives

Ur   I    n lp       "v   l/p

ZZ Aju„[£>„(* ± 0 - D,(x)]    dx\
(12) r/"1"1 '       J

+ <  I        E  A/* rZ>„(x ± 0 - £>,(*)]    dx\      = /,!+/«.
V. ̂ T/n I ?=n+l I /

By dividing the interval (ir/ra, w) in subintervals (7r/(wz-rT), ir/raz)

(w = l, • • • , ra —1) and applying D»'(x)=0(j'2) for O^x^ir and

Di (x) = 0(x-2)+0(j'X~1) =0(jor1) for ir/V^x^ir, one obtains in

such a subinterval

n

zZ Ap,[Dvix ±i) - D,(x)]
»-i I

(m n     \

1Z+ JZ ) a^ I A'(* + e.t) i

m n

= 0(0 £ "2Am, + 0(0 (x - O"1   zZ vAib,        i-K6,<l)
v=l v-m+1

because, on account of x^ir/im + l), the second estimate for DI (x)

is applicable to every member in the latter sum. If we remember that

by Abel transformation

m m n n

zZ v^&P* =S 2 zZ vu*, zZ "A/i, g   zZ y-' + mpm+i,
v=l v=*l F=m+1 v=m+l

and observe that, owing to t^w/2n, the inequality (x —0_1^2x_1

(x Si 20 may be applied in any of the mentioned subintervals, we get

at last the following estimate:

n

zZ &ib[D,ix + 0 - D,(x)]
v-l

m n

= O(0 Z vp, + Oilm)   zZ lh + OitmW) ■
i»=-l r—m+1

Thus,

n— 1    /»x/m        I     n lp

/Ii = E Z Am,[£,(* + 0 - #,(*)]    i*
m-l "^ x/(m+l) I  »-l

/ n—1 /   m \ p n—1 /      n \ p n—1 \

= oiP)\zZm-\zZ^) +E^!   EJ + E»   4 •
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By Hardy's inequality (10) with Cm = mum for m<n and Cm = 0 for

m^n, the first of these sums is essentially majorized by the third.

The same holds for the second sum according to another inequality of

Hardy [3, ibid.]:

00 /     00 \ p 00

E«-(EC,)   ̂ KpJ^m^'cl       (c<l,Cm^0,p>l),

if we choose c = 2—p and Cm = um+i for m<n and Cm = 0 for m^n.

Hence,

(13) /„ ^ Apn-> i £ v'^'/i'l   *.

Lastly,

/    /• i+x/2n I      oo ip        \   1/p

/!2^2] £  A/i,Z>,(«)    <fcrj
I *> i/2n I r—n+1 I J

= o(pn)if   x-*dx\ P = ory-^n).

As

one finds

/ "-1 ,     ^   1/P

(14) 722g ^pW-1|E"P   m">     •

Collecting in (8) and (12) the estimates (9), (11), (13) and (14),

from (7) follows Theorem 2.

3. Proof of Theorem 1. Recently, Konjuskov [4] called attention

to the fact that if fELp (1 <p< oo) has a cosine or sine series with

monotone coefficients,8 then

(15) <(n~u,f) ^ Cpw1-1'^        (Cp > 0).

Konjuskov deduced (15) from his results about the relationship be-

tween the best trigonometric approximation of / in Lp and the

Fourier coefficients of/. As (15), together with a special case of Theo-

rem 2, is essentially in the proof of Theorem 1, we give here a direct

* He even supposed that for a fixed t>0, the sequence n~Tu„ is only almost de-

creasing. His result is not limited to the modulus of second order only.
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proof of (15). It is based on the following identity, easily verified:

1   Cr "

(16)    — I    [2/0) - /(* + 0 ~ /(* ~ 0] Tm.nix) dx=zZ»> sin2 \vt,
4t J —i ;-m

where rm,„(x) = zZ"-m cos vx and/is a cosine series. If we set t = ir/n

in (16) and choose m= [ra/2], then

" vt       I  JL, m2
2_< n, sin2 — ^ —Z-, "V» ^ —Unin — m + 1) t Cnun.
v—m -^ra      ra FSTn ra

On the other hand, in virtue of Holder's inequality,

— ("[2/0) -fix + «■/») -/(* - x/ra)]7V„(x) dx
i-irJ-T

^ Apnl"> |  f   |/(x + r/n) + fix - r/n) - 2/(x) | "dx\

g Apn^w*iT/n;f),

because il/q = 1 — l/p)

| Fm,n(x) |« rfx = 2 -j  I      0(ra«) <fx +  I     0(x-«) ixV = OO*-1).

Hence, (15) follows.

The proof of Theorem 1 is now immediate. If p.n are the coefficients

of / and uj(»_1; /) £A,irl, then, according to (15), Aing5j,ra-2+1/p

and one has only to apply Theorem 2 in this special case.

4. Proof of Theorem 3. On account of the well-known theorem of

Hardy and Littlewood [2], which asserts the equivalence of (i) and

(ii) in the general case, we have only to prove that (6)=*(i) and that

(ii)=K6).
(6)=*(i). Because of sn = zZZ.i "23,_2M» < oo, an Abel transformation

gives

CO 00

zZ v    P> = IZ v   is' — Sv-i) = 0(ra-p).
p=n r=n

Hence, the second term in (5) is also of order 0(ra_1), i-e. /£AP.

(ii)=>(6). The proof proceeds, with necessary changes, along the

same lines as the necessity part in the proof of Lemma 6.6 in [8,

Chapter XII], and is adapted for the sine series.

Let
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/► X 00

f(t) dt ■= 22 «~V» 1 — cos MX.
0 n=l

Then, even simpler than in the proof of the cited lemma, F(ir/n) 2? Cp.n.

If we set

G(x) =  \    dt \    \f'(u)\du.
"0 " 0

then   F(x)^G(x).   Hence,  applying  twice  Hardy's  inequality   [8,

Chapter I, p. 20], we get

"   ^2p        "   2p-2 p " r "("-1) rc(*)-|"
2^ M     Mn ̂  4P 2^n     G (t/u) ^ ApL, \ -   x-p dx
n=2 n=2 n=2 J r/n L    X     J

= Ap f   \-^-Tx-pdx ^ Ap j   (f   |/(0 | dt\x-pdx

^ Ap f   \f'(x)\*dx< oo,
J o

which completes the proof of Theorem 3.

References

1. S. Aljancic and M. Tomic, Tiber den Stetigkeitsmodul von Fourier-Reihen mit

monotonen Koeffizienten, Math. Z. 88 (1965), 274-284.

2. G. H. Hardy and J. E. Littlewood, Some properties of fractional integral. I,

Math. Z. 28 (1928), 565-606.

3. G. H. Hardy, J. E. Littlewood and G. P61ya, Inequalities, Cambridge Univ.

Press, New York, 1934.

4. A. A. Konjuskov, Best approximation by trigonometric polynomials and Fourier

coefficients, Mat. Sb. 44 (86) (1958), 53-84.
5. A. F. Timan, Theory of approximation of functions of a real variable, Pergamon

Press, New York, 1963.

6. A. F. Timan and M. F. Timan, Generalized modulus of continuity and best

approximation in the mean, Dokl. Akad. Nauk USSR 71 (1950), 17-20.

7. A. Zygmund, A remark on the integral modulus of continuity, Rev. Univ. Nac.

Tucuman 7 (1950), 259-269.
8. ■—■-, Trigonometric series, 2nd ed., Cambridge Univ. Press, New York, 1959-

Proleterskih Brigada 62

Belgrad, Yugoslavia


