
ON THE ZEROS OF SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

A. S. GALBRAITH

This note gives a proof of the following theorem:

In the differential equation

(i) y" + P(x)y = o,

where primes mean derivatives, suppose p(x) to be positive or zero,

monotonic and concave (no point of an arc lies below its chord) in

some closed interval [a, b}. If

(2) f p(x) dx 2: (9/8)»V/0 - a),

where n is an integer, then every solution of (1) has at least n zeros

in [a, b]. The number 9/8 cannot be replaced by a smaller one.

A theorem similar to this, but with more restrictive hypotheses,

has been proved by Makai [5].

Related theorems have been proved by a number of authors, back

as far as Liouville. More recent examples are given in the references.

The proof depends on three lemmas.

Lemma 1. If the equation

(3) y" + q(x)y = 0,

where q(x) is continuous, has a solution with consecutive zeros at x = c

and x = d, and if

(4) f q(x) cos(2x(x - c)/(d - c)) dx ̂  0,

then

(5) f q(x)dx^ir2/(d-c).

Proof. Let y(x) be the solution referred to, and let

z(x) = (2/(d - c)Y12 sin(7r(x - c)/(d - c)),    so that      j    z2 dx = 1.

Now
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/d /* d
Hz'y - zy'y/y*) dx =   I    iz'y - zy')iz/y)' dx

= Wy - zy')iz/y) \1 - J iz/y)iz"y - zy") dx

=   f  02/(rf - c)2 - ?0))z2 dx,

from (3). Since y(x) and zO) have simple zeros at x = c and x = d, their

ratio has a limit at each end of the interval, so the integrated term

vanishes. Then

tt2/(^ - c)2 ^   f qix)z2dx

= (l/(rf - c)) ]    qix)[l - cosOO - c)/id - c))] dx.

From this and (4), (5) follows.

Corollary. The number s is not less than d, if s is determined by

I    qix) dx = 7r2/(s — c).

Lemma 2. If pix) is concave, then

I   pix) cos(2xO - c)/id - c)) dx ^ 0.
"I c

This lemma is due to E. Makai [4], pp. 370-371.

Lemma 3. Let {xi} and {xi }, i = 0, 1, 2, • • • , ra, be two sets of

numbers such that

(a) x0<Xi<x2< ■ • • <xn,x0' <x{ <x2 < • • • <xn';

(b) Xi — Xo~^x2 — xi^x3 — x2^ • ■ • ^xn — xn-i,

and similarly for the {xi };

(c) xi ^Xi, i=l, 2, • • • , ra —1;

(Q)   Xo == Xo , Xn = Xn .

Then

(6) £ 1/0/ - xU) g £ I/O,- - *,_,).
i-l i-l

Proof. The case ra = 1 is trivial, and if ra = 2 the proof is elementary.
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To complete the proof by induction, let Sn' and Sn stand for the left

and right members of (6) respectively. Then S„' ^ Sn must be shown

to imply Sn+i^Sn+i, with n replaced by w + 1 in (a), (b), (c) and (d).

Let g be the least of x, — x[, and let x" =x/ +g, i—l, 2, • ■ ■ , n, so

that x/'—xi'l1=x/—x/_i. Let S„'+1 be formed from Sn+i by sub-

stituting xi' for x/. (x0" =x0' =x0, x„'+1=x„'+i = x„+i.) Then

On+l   — On+1

=  1/(X„+1 — Xn") -  l/(xn+1 - X„') + l/(Xi"  — X0) - l/(Xi'   - X0)

= ^[l/(^n+l - X„")(xn+1 - X„') -  l/(Xi"   - X0)(Xi'   - X0)].

Now x„+i — x„" = xn+i — xn + (x„ — xn') — g 2; xn+i — xn > 0, and x„+i — x„"

Ssxn+i—x„' ^ xi* — x0 by (c) above; while x(' — x02:xi — x0. Hence

the first denominator in the square bracket is not greater than the

second, so that the bracket is positive or zero. Then 5„'+1 —5„'+i2:0.

But for at least one value of i, say i = k, 0<&<w + l, x" = xk. Then

Sn+i and S'„'+i can each be broken into two sums, from i= 1 to i = k

and from i = kArl to i = nArl respectively. Each of these latter sums

contains no more than n terms and satisfies the hypotheses of the

lemma. Hence the induction hypothesis applies to each, and their

addition yields 5n+i — 5„'+12:0. Addition of the previous inequality

gives the lemma. (This proof, by E. Makai, Jr., was kindly sent to

the author by the referee.)

Proof of the theorem. Consider first that p(x) has the special

form

r(x) = 2AnVx,

where A is a positive constant and [a, b] is [0, 1]. Inequality (4) is

satisfied, and it will appear later that A can be 9/8. Choose a solution

y(x) with y(0) = 0. Successive applications of Lemma 1 show that the

succeeding zeros of y(x) precede respectively the numbers xi, x2, ■ ■ ■ ,

where the x,- are determined by the equations

/'•I 2 23
r(x) dx = it /xi    or    An Xi = 1,

o

I   X* 2 2     3 2
I    r(x) dx = t /(x, — Xi)    or    An (x, — xA(x, — Xi) = 1, etc.

J mi

For » = 1, the theorem is true by Lemma 1. Assume it true for n.

For n +1, the points Xi corresponding to the Xi are Xi = (n/(n Ar 1)) 2/3x,-,

as is seen by substitution. The theorem will be true for n + 1 if

A(n + 1)2(X'+1 - xl)(Xn+i - Xn) = 1
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while An+i g 1, or if

A(n+ 1)*{ 1 - (ra/O + I))4'3*'} {1 ~ 0/0 + l)f*xn} = 1.

Since xn g 1, A can be chosen so that

Ain+ 1)2{1 - (ra/O + 1))4/3}{1 - 0/0 + 1))2/3} = 1,

or

A{in + l)2'3 - ra2'3}2{(ra + l)2'3 + ra2'3} ^ 1.

Let the part in braces be/(ra). Then/(1)>0.8914, since 22'3> 1.587.

Then if .4=9/8, .4/(1) >1.
The behavior of /(ra) for large values of ra can be examined by treat-

ing w as a continuous variable, increasing without limit. It can be

shown by elementary arguments that /'// is negative and that the

limit of /(«) as ra increases is 8/9. Hence if A = 9/8 the theorem is

true for the function rix) considered.

Now let pix) be a function different from rix), and satisfying the

hypotheses of the theorem. Since flpix)dx'Si i9/8)nW, pix) must be

greater than r(x) near x = 0 and less (perhaps) near x — 1. Suppose first

that p{x) is increasing. The equations (7), with pix) for r(x), will

determine numbers x(, x2, • • • , which are not less than the respec-

tive zeros, by Lemma 1, and such that x{ ^x2 — x{ Si • • • .

Now xi ^Xu i = l, 2, • • • , ra. For if not, let xi gx,-, i—1, 2, • • • ,

j —1, and suppose xj >x,-. Then

(1/tt2) J''pix) dx = l/x{ + 1/0,' - xi) + ■ • • + 1/0/ - xU)

(8) < 1/xl + 1/ixi - xi) + ■ ■ ■ + 1/iXj - */_!)

g   l/Xi + 1/0, - Xi) +   ■  ■  ■  + 1/iXj - *y_,)

by Lemma 3, and this last sum is (l/ir2)/?' r(x)<2x. But if F(x) =

JliPit)—rit))dt, F'ix) =p{x) —rix), which is zero at no more than one

point between 0 and 1, by the concavity of pix). Hence F(x) has at

most one maximum, and is positive between 0 and 1. Since pix) is

positive, JxQ'"pix)dx <JX0 pix)dx <fx.'"rix)dx by (8), so Fix/) <0, a con-

tradiction. Hence xj ^x3-,j = l, 2, • • • , ra. The inequality above will

apply directly if ra = l. Sturm's separation theorem shows that every

other solution will have at least ra zeros. A linear change of variable

from [0, l] to [a, b] does not affect the argument. If pix) is decreas-

ing, the same proof can be used from right to left.

That 9/8 is the best possible constant can be shown thus: The
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solution of y" + xy = 0 that vanishes at the origin is y(x)

= (x)1/2/i/3(2x3/2/3), where J( ) is the Bessel's function of the first

kind. If i = 2x3/2/3, the function Y(t) =(t)1l2Ji/z(t) has zeros at points

corresponding to those of y(x), and satisfies the equation

(9) d2Y/dt2 A- (I A- 5/(36t2)) Y = 0.

The zeros tn of Y(t) after the first will have the form

tn = nir + h + o(l/n),

where h is some constant, since the interval between successive zeros

approaches w as n becomes infinite. If a constant B<9/8 could be

used in (2), that inequality would show that the number vn, deter-

mined by f0,"xdx — Bn2ir2/vn, was not less than x„, the nth positive

zero of Ji/3(2x3/2/3). This would imply

B = t>„/2»V 2: xl/2niri = (3tn/2f/2nv

= (9/8wV)(»;r ArhAr o(l/n))\

which approaches 9/8. This completes the proof.

The author is grateful to the referee for the proof of Lemma 3, for

[4], and for pointing out some places where the argument was not

clear.
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