CHARACTER KERNELS OF DISCRETE GROUPS!
D. S. PASSMAN

Let G be an arbitrary discrete group and let I'= C[G] be its group
algebra over the complex numbers C. If R is an irreducible repre-
sentation of the algebra then R(T') =P is primitive and hence iso-
morphic to a dense set of linear transformations over D, the com-
muting ring of 9 [4, p. 28]. Let L be the center of D. If dim; P<
then we say that % is finite and since P is central simple over L [4,
p. 122] we have dim P =m? We set m =deg R, the degree of R. If
G is finite then C is always the commuting ring of R so this agrees
with the usual definition of degree.

Again let P=%R(I"). Then by a theorem of Amitsur [1] deg R<n
if and only if for every 2x elements x, - - -, X2, in P we have

[xl’ ceey, x2n] = Zi x’.lxi’ .« e xiz,. = 0.

The above is known as the standard identity of degree 2x. For in-
finite discrete groups, representation theory is not particularly well
behaved. Therefore we will make use of these identities in C[G].

If ¢&G we say that g is in the kernel of % if and only if R(g)
=%(1) =1. We set R.(G) =Nker R where N runs over all irreducible
representations of degree >n. We study groups G with 8,(G)>1. It
is convenient to let b(G) =lub of the degrees of the irreducible repre-
sentations of G. If 5(G) £# then trivially 8,(G) =G. Thus we will be
interested mainly in groups with 5(G) > .

THEOREM 1. Let I, =1,[G] be the linear subspace of C[G] spanned by
all terms of the form [xy, - - -, %2, ] with x;EC[G]. Then g€ 8.(G) if
and only if (1—g)I,=0.

Proor. First let g& R.(G). Let R be any irreducible representa-
tion of C[G] and consider R((1—g)I,). If deg R>n then R(1—g)
=0. If deg ® =# then RN(I,) =0. Hence in either case R((1 —g)I,) =0.
Since this holds for all & and C[G] is semi simple [5, Theorem 5.2]
this yields (1—g)I,,=0.

Conversely let (1—g)I,=0. Let J,={a&C[G]|al,=0} so that
J. is clearly a left ideal of C[G]. To show that it is a right ideal we
need only show for hEG that J,hC J,. Since clearly s~ 1I,h=1, we
have
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Und)Iw = (k) (' Iuk) = JoIk = 0

and so J, is a two-sided ideal. Let )i be an irreducible representation
of C[G] of degree >n. Let V be the corresponding left C[G]-
module and set V*={v& V| J,0=0}. Since J, is a right ideal, V* is
a submodule of V. Hence either V*=V or V*=0. Now deg &1 ># so
R(C[G]) does not satisfy the standard identity of degree 2n. Hence
R(I,)#0 and I,V#0. But J,(I.V)=0 so I,VSV* and hence
V*=7V. Since (1—g)EJ, and J,V=0 we have R(g) =R(1) and the
result follows.

Now I, [G] is spanned as a linear space over C by all terms of the
form [gi, - - +, g2 with g;EG. Hence we have the following.

COROLLARY 2. Let b(G)>n. Then | R.(G)| £3(2n)!.

Proor. Now b(G)>n implies that I,[G]#0. Thus we can find
¢:EG with B=[gi, - -+, 2.]#0. If gER.(G) then (1—g)B=0 so
that g8=R8. If 8= D_c;h; with ¢;EC and h;EG then R,.(G) permutes
all those k; with ¢;>0. Thus I £.(G)| divides 7, the number of such
ki Since B0 and D c;=0 we see that 1<r<%(2n)! and the result
follows.

If H is a subgroup of G then C[H] is naturally embedded in C[G].
Moreover in this embedding I,[H]ZI.[G]. With this remark we
have

CoroLLARY 3. Let H be a subgroup of G with b(H)>n. Then
K.(G) S K(H).

PRrOOF. Since b(H)>n there exists h;EH with 8= [k, - - -, ha]
#0. Let g€ 8.(G). Since f=gB we see clearly that g& (s, - + -, h2n)
CH. Now (1—¢)I,[G]=0 implies (1—g)I.[H]=0 so g& f.(H).

The following result essentially reduces the study of groups G
with 5(G) >7 and £.(G)>1 to a study of finite groups.

THEOREM 4. Let b(G) >n and £,.(G)>1. Let By, + -+ -, Bm be a finite
number of nonzero elements of C[G]. Then we can find subgroups H and
N of G such that

() By - -+, B=EC[H];

(i) b(H)>n;

(i) R.(H)=R.(G);

(iv) N is a normal subgroup of H with H=H/N finite and b(H)>n;

(v) under the natural homomorphism C[H]—C|[H] we have 8;—f:
#0 and R.(G)=[8.(G)]~= R.(H).

Proor. First we show that we can find group elements g;; with
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i=1,2,---,randj=1,2, -+, 2n such that g€ &,(G) if and only
if for all ¢

(1 — 9)lges, gizs - -+ gro] = 0.
Let 8 be the set of all terms a=[gi, - * -, g2.]#0 with g;EG. For

each such aEs set R2= {gEG| (1 —g)a=0}. As in the proof of Corol-
lary 2, IS?" <1(2m)!. By Theorem 1, £,(G)=N&=. Since each K<
is finite, clearly only a finite intersection is required.

For the remainder of the proof fix such a set { gi;} CG. Let Hbe a

finitely generated subgroup of G with HD{g;;} and B, - - -, Bn
€C|H]. Such groups clearly exist. Clearly b(H)>n and we have
Rn(H)_D_\Qn(G)- But if he@n(H) then (1‘_‘h) [gi,ly ottty gi.2n]=0 for

all 7 so hE R,(G). Hence ®,(H)=R.(G). With this choice of H we
have (i), (ii) and (iii) of Theorem 4 satisfied.

We now show that H is a subdirect product of finite groups. Fix
gE R.(H) with g>=1. Let & be any nonidentity element of H. In
C[H] the expression y=(1—g)(1—h) is nonzero since otherwise
14+gh=g+h and so 1 =g or h. Since C[H] is semisimple there exists
an irreducible representation % of C[H| with 9t(y) 0. Hence R(g)
#1 and RN(k) #1. The first of these implies that deg N <». Hence we
conclude that H is a subdirect product of linear groups of finite de-
gree. By Proposition 7.3 of [3], each such linear group being finitely
generated is the subdirect product of finite groups. Hence the result
follows.

Now only a finite number of group elements of H occur in the
expressions for the 8;and the [g;1, - - - ,giom ) Letthesebehy, « -+, b,
Then we can write 8;= D _cih; and [gin, * - -, Zion] = 2 dsijh; with
¢ijy d;;EC. Let 3 be the finite set containing (1) f.(H), (2) all ele-
ments of the form 7;A;, and (3) all elements of the form k;h;71 by hit.
By the above there exists a normal subgroup N of H of finite index
with NN\3={1}. We show now that with this N, (iv) and (v) of
Theorem 4 follow.

Since NN3= {1} and k;zr*€3 it follows that under the homo-
morphism H—H = H/N, that k; (the image of k;) is not equal to /.
With this we see that ;70 and that [ga, * + *, Zi2.] 0. The latter
implies in addition that b(H)>n. Since any irreducible representa-
tion of C[H] can be viewed as one of C|H] we have NR.(H)/N
C R.(H). But NR.(H)/N >~ R.(H)/(N N K.(H)) >~ R.(H) since
NNR.(H)=1. Hence R,(H)=8.(G) is contained isomorphically in
f.(H). We need only show that the isomorphism is onto. Let
gER.(H) with g an inverse image of . It suffices to show that
gENR.(H).
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Since € ®,(H) we have for all ¢
glai, - -+, Bzl = [Zi, - - -, Baan]-
In C[G] this yields clearly
g2 dihy) = 22 dijnish;

with 7;;€ N. This follows since all the %; are distinct. We show now
that all the n;; are equal. Consider one such element #;;%;. This comes
from a term gh; on the left of the above equation. Thus ghj; =n;;h;
or g=nh;h;'. Replacing 7 by 7/, j by &, and j' by ¥’ we also have
g =7L,"khkhk_/l. Thus

to i = hilip bl € NN 5 = {1}

SO m;; =k Let their common value be #y,. Then for all 4

-1
n11 g[gu, ) gizn] = [ga, ) gm].

By the choice of the g;; this implies that #;'gE 8.(G) = £,.(H) and
gENSR,.(H). This completes the proof.
As an application of the above result we prove

THEOREM 5. Let R,.(G)>1. Then b(G) <n?.
PRrOOF. Suppose by way of contradiction that 5(G) >n?=m. Then

we can find group elements gi, - - -, gon such that [gy, - - -, gam | #O0.
Set B;=g; and Boms1=[g1, - * -, g2m]. Applying Theorem 4 we obtain
a finite group H with &,(H) >1 and containing elements 21, - - * , fm
with g1, - + -, Zm]50. Hence b(H) >n2.

Let 2€ R,(H) with 25 1. Let 0 be an irreducible complex character
of H of degree >n? This exists since b(H) >n?. Clearly % is in the
kernel of 6, that is (%) =6(1) =deg 6. Since C[H] is semisimple we
can find an irreducible character x of H with % not in the kernel of x.
Let 0x = D> _a; x: where the x; are irreducible. Since % kernel of 8y
there exists a x;, say x1 with Z& kernel x1. Now x1 is a constituent
of fx so

1 = [0x, xa] = [8, %1l

where [ , ] denotes the usual inner product of characters. Hence 6
is a constituent of xx1. This yields

n* < degf = deg xx1 = (deg x)(deg x1)-

Clearly at least one of deg x or deg x1 is ># and this is the required
contradiction.
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By Theorem F of [3] groups G with b(G) <n? all have abelian sub-
groups of index =J(2n?), where J is the function associated with
Jordan’s theorem on finite linear groups. Thus &,.(G) >1 is a rather
restrictive condition for a group to satisfy. We discuss now a method
of constructing a class of groups G with 5(G) ># and &.(G) >1.

Let p be a fixed prime and let e = p. Suppose we have e groups H;
each having a central subgroup Z;=(z;) of order p. Set

a; = minimal degree of irreducible character 6; of H; with Z; O ker 6,;
b, = b(H,);
C; = b(H,/Z,)

We suppose further that for all ¢

) ®:/c) > T1 G3/a).

=1

Let U be an abelian group of type (p, p) generated by u, v& U.
We define a homomorphism of

ZyXZyX -+ XZ,—>U

by z;—uvi. This is clearly onto. Let the kernel be N. Then N is a
central and hence normal subgroup of H=H; XH;X - - -+ X H,. Set
G=H/N so that GD U, a central subgroup of type (p, p). Set n41
= ][] a:. We show that v& &,(G) and that b(G) >n.

Let 6 be an irreducible character of G. Then since U is central
0| U=(deg )\ where \ is a linear character of U. Hence some sub-
group of order p of U is the kernel of 6. The subgroups of U are of
course (v) and (uv?) for i=1, 2, - - -, p. Since G is a homomorphic
image of H, 0 can be viewed as a character of H. In H we write
0=00; - - - 6. where 0, is an irreducible character of H;.

Suppose first that (v)E ker 6. Then forsome:i=1,2, - - -, pwehave
(uv*)Cker 0. Then clearly in H, z;Eker ;. Hence deg 6, <c¢; and of
course for j#1¢, deg 6, <b;. Thus

deg 8 < (JT ) Cci/b) < Il aj=n+1.

Hence deg 8 < and v& 8,(G). Now choose 0 to be a character of
G/{v) which is faithful on cyclic U/{v). Viewed in H we see that for
all 4, z;&ker 6;. Hence deg 8,2 a; and so deg 6= [Ja;=n+1. There-
fore b(G) >n and the result follows.
Using the above we can easily construct some examples.
EXAMPLE 6. Let each H; be a nonabelian group of order p2 Then
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a;=p, bi=p and ¢;=1 and so equation (1) is satisfied. This yields
groups G nilpotent of class 2.

Indecomposable nonnilpotent groups with nontrivial kernels can
be obtained as follows.

ExAMPLE 7. Let P denote the quaternion group of order 8 if p=2
or the nonabelian group of order p? and period 2 if p is odd. Let Z be
the center of P. We have | Z| =p. Let 4 denote the group of auto-
morphisms of P which centralize Z. 4 is easily seen to be isomorphic
to the Symplectic group S,,(p) whose order is p(p+1)(p—1). Let
a& A be of prime order ¢g#p and let H be the semidirect product of
P by the cyclic group {a). Thus P is normal in H with index ¢ and
Z is central in H.

Let x be an irreducible character of H. By Proposition 1.2 of [2],
either x| P is irreducible or x| P is the sum of g conjugate char-
acters under the action of (). In the first case deg x =1 or p. In the
second case let ¢ be an irreducible constituent of x| P. If degp=p
then ¢ vanishes off Z. Since « centralizes Z, ¢*=¢, a contradiction.
Hence deg ¢ =1 and deg x =¢. Thus H has characters of degree 1, p
and ¢ only. Moreover if H=H; we have easily a;=p, b;=max(p, ¢)
and ¢;=gq.

If p=2 choose ¢=3. Then b(H)=3 and ZCR(H). If p>2 then
choose ¢ to divide p(p+1)(p—1) so p>g. Hence in this case equation
(1) is satisfied and the group G constructed has the required property.

REFERENCES

1. S. A. Amitsur, Groups with representations of bounded degree. 11, Illinois J.
Math. 5 (1961), 198-205.

2. 1. M. Isaacs and D. S. Passman, Groups with representations of bounded degree,
Canad. J. Math. 16 (1964), 299-309.

3. , Characterization of groups in terms of the degrees of their characters,
Pacific J. Math. 15 (1965), 877-903.

4. N. Jacobson, Structure of rings, Amer. Math. Soc. Collog. Publ. Vol. 37, Amer.
Math. Soc., Providence, R. 1., 1956; rev ed., 1964.

5. C. Rickart, Uniqueness of norm in Banach algebras, Ann. of Math. 51 (1950),
615-628.

UNIVERSITY OF CALIFORNIA, Los ANGELES



