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Let G be an arbitrary discrete group and let T = C[G] be its group

algebra over the complex numbers C. If 9? is an irreducible repre-

sentation of the algebra then 9i(r)=P is primitive and hence iso-

morphic to a dense set of linear transformations over D, the com-

muting ring of 9J [4, p. 28]. Let L be the center of D. If dimr, P < °o

then we say that 9? is finite and since P is central simple over A [4,

p. 122] we have dinuP = ?ra2. We set rai = deg 9?, the degree of 9t If

G is finite then C is always the commuting ring of 9i so this agrees

with the usual definition of degree.

Again let P = 9f(r). Then by a theorem of Amitsur [l] deg 9i^ra

if and only if for every 2ra elements xi, • • • , x2n in P we have

\Xl, , X2n\ / .     XjjXjj  •   '   ' X,'2n u.

The above is known as the standard identity of degree 2ra. For in-

finite discrete groups, representation theory is not particularly well

behaved. Therefore we will make use of these identities in C[G].

If gEG we say that g is in the kernel of 9J if and only if 9?(g)

= $R(1) = 1- We set $„(G) = Piker 9? where 9? runs over all irreducible

representations of degree >ra. We study groups G with $„(G)>1. It

is convenient to let &(G) =lub of the degrees of the irreducible repre-

sentations of G. If 6(G) S=ra then trivially $„(G) =G. Thus we will be

interested mainly in groups with &(G) >ra.

Theorem 1. Let I„ — In [G] be the linear sub space of C[G] spanned by

all terms of the form [xi, • ■ • , x2n] with XiGC[G]. Then gEffniG) if

and only if (1—g)7n = 0.

Proof. First let gE^niG). Let 9t be any irreducible representa-

tion of C[G] and consider $R((l-g)/„). If deg9t>ra then 9J(l-g)

= 0. If deg 9? gra then 9?(/„) =0. Hence in either case 9?((1 -g)7„) =0.

Since this holds for all dt and C[G] is semi simple [5, Theorem 5.2]

this yields (l-g)/„ = 0.

Conversely let (l-g)I„ = 0. Let /„= {oGC[G]|a/n = 0} so that

A, is clearly a left ideal of C[G]. To show that it is a right ideal we

need only show for hEG that JnhQJn- Since clearly h~1IJi = In we

have
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(Jnh)I„ = (Jnh)(1rlInh) = JJnh = 0

and so Jn is a two-sided ideal. Let 9t be an irreducible representation

of C[G] of degree >re. Let V be the corresponding left C[G]-

module and set V*= {vE V\ Jnv = 0}. Since Jn is a right ideal, V* is

a submodule of V. Hence either V* = For F* = 0. Now deg 9?>re so

9?(C[G]) does not satisfy the standard identity of degree 2w. Hence

9t(7n)^0 and 7nF^0. But Jn(InV)=0 so 7nFCF* and hence

V*=V. Since (l-g)£7„ and JnV = 0 we have 9t(g)=3t(l) and the

result follows.

Now In[G] is spanned as a linear space over C by all terms of the

form [gi, • • • , g2n] with giEG. Hence we have the following.

Corollary 2. Let b(G)>n. Then | $„(G)| g§(2«)!.

Proof. Now b(G)>n implies that 7„[G]^0. Thus we can find

giEG with B=[gi, ■ • ■ , g2n]*0. If gE®n(G) then (l-g)B = 0 so
that gB = B. If B= Yciht with CiEC and /»i£G then $„(G) permutes

all those hi with c,->0. Thus | $„(G)| divides r, the number of such

hi. Since jS =^0 and X^c» = 0 we see that 1 ^r^^(2n)\ and the result

follows.
If 77 is a subgroup of G then C[77] is naturally embedded in C[G].

Moreover in this embedding 7„[77]C7n[G], With this remark we

have

Corollary 3.  Let H be a subgroup of G with b(H)>n.   Then

®n(G)Q®n(H).

Proof. Since b(H)>n there exists hiEH with B= [hi, • • ■ , h2n]

9*0. Let g£$„(G). Since 8 = gB we see clearly that gE{h, • • • , h2n)

C/7. Now (l-g)7jG]=0 implies (l-g)7n[77]=0 so g£^„(77).
The following result essentially reduces the study of groups G

with b(G)>n and $„(G) > 1 to a study of finite groups.

Theorem 4. Let b(G) >re and $„(G) > 1. Let p\, • • • , Bm be a finite

number of nonzero elements of C[G]. Then we can find subgroups H and

N of G such that

(i) ft, • • ■ ,BmEC[H];
(ii) 6(77) >re;
(iii)  «„(fl) = ft»(G);
(iv) N is a normal subgroup of 77 with 7l = H/Nfinite and b(H)>n;

(v) under the natural homomorphism C[77]—>C[i7] we have 8—>/3,-

9*0 and ^„(G)~[fn(G)]- = ^n(77).

Proof. First we show that we can find group elements gij with
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* = 1, 2, • • • , r and j=l, 2, • • • , 2ra such thatgG^n(G) if and only

if for all *

(1  - g)[gi,l, gi.h  •  •  • . gi.in]   =  0.

Let S be the set of all terms a= [gi, ■ • • , g2n]9^0 with giEG. For

each such aGSset $"= {gGG| (1—g)a = 0}. As in the proof of Corol-

lary 2, \®"\ gi(2ra)!. By Theorem 1, $„(G)=nSa. Since each ®"

is finite, clearly only a finite intersection is required.

For the remainder of the proof fix such a set {gn} CG. Let H be a

finitely generated subgroup of G with ATZ){g;;} and fii, • • • , fim

EC\H]. Such groups clearly exist. Clearly &(A)>« and we have

«.(H)3jfn(G). But if hE®niH) then (l-A)ku. • • • . «<.».] =0 for
all t so hE^niG). Hence $„(#) = $„(G). With this choice of iJ we

have (i), (ii) and (iii) of Theorem 4 satisfied.

We now show that H is a subdirect product of finite groups. Fix

gE^niH) with gj^l. Let h be any nonidentity element of H. In

C[H] the expression 7 = (1— g)(l— h) is nonzero since otherwise

l+gh = g+h and so l—gorh. Since C[H] is semisimple there exists

an irreducible representation 9? of C[H] with 9i(7)t^0. Hence 9t(g)

7^1 and 9?(fe) 5^1. The first of these implies that deg 5ft = ra. Hence we

conclude that H is a subdirect product of linear groups of finite de-

gree. By Proposition 7.3 of [3], each such linear group being finitely

generated is the subdirect product of finite groups. Hence the result

follows.

Now only a finite number of group elements of H occur in the

expressions for the j3,-and the [g,-,i, • ■ • ,gt-,2»]- Let these be hi, ■ ■ ■ , h,.

Then we can write fit= zZcii^i and \gi.i, " " ' > g<.2»]= zZdi/hj with

Cij, dijEC. Let 3 be the finite set containing (1) ^„(77), (2) all ele-

ments of the form hjhkl, and (3) all elements of the form hjh/r1 h^hf1.

By the above there exists a normal subgroup N oi H of finite index

with AP\3 = {l}. We show now that with this N, (iv) and (v) of

Theorem 4 follow.

Since JVPi3= {l} and hihk~1E^ it follows that under the homo-

morphism H-^>H = H/N, that hj (the image of h/) is not equal to hk.

With this we see that p\;^0 and that [gn, • • • , |,2«]t£0. The latter

implies in addition that &(A)>ra. Since any irreducible representa-

tion of C[H] can be viewed as one of C[H] we have N®„iH)/N

C ®n(H). But A$n(A")/A~ l,(fl)/(J?n S„(H))~ £„(#) since

Nr\$niH) = l. Hence 3?n(PT; = $„(G) is contained isomorphically in

$„(A). We need only show that the isomorphism is onto. Let

gG^n(A) with g an inverse image of g. It suffices to show that

gEN^niH).
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Since f£J?„(77) we have for all i

g\_gih 7  gi2n\ [gill J  gi2nj«

In C[G] this yields clearly

g(Y dijhA = Y dijUijhj

with ntjEN. This follows since all the hj are distinct. We show now

that all the re*,- are equal. Consider one such element titfij. This comes

from a term ghj> on the left of the above equation. Thus ghj>=nijhj

or g = mjhjhp1. Replacing i by i', j by k, and f by k' we also have

g = ni>khkhk~A. Thus

nn «,'* = AyAy» ^i-^4   Gfn3= jlj

so nij = ni>k. Let their common value be «n. Then for all i

nug[gn, ■ ■ ■ , gi2n] = [gn, • • • , gi2n}.

By the choice of the gij this implies that re^1g£$„(G) = $„(77) and

g£AJ?n(77). This completes the proof.

As an application of the above result we prove

Theorem 5. Let $„(G)>1. TTten 6(G) =re2.

Proof. Suppose by way of contradiction that 6(G) >n2 = m. Then

we can find group elements gi, • • • , g2m such that [gi, ■ • • , gim]9*0.

Set 8i = gi and /32m+i= [gi, • • • , g2m]- Applying Theorem 4 we obtain

a finite group H with ®n(H) > 1 and containing elements fi, • • • , g2m

with [gi, ■ • ■ 1_g2m]9*0. Hence 6(77) >re2.

Let h~ES£n(H) with \i9*l. Let0 be an irreducible complex character

of H of degree >re2. This exists since b(H)>n2. Clearly h is in the

kernel of 6, that is 6(h) =6(1) =deg 6. Since C[H] is semisimple we

can find an irreducible character x of H with h not in the kernel of %.

Let 9x= Yai Xi where the x, are irreducible. Since A£kernel of dx

there exists a x» say xi with A£kernel xi- Now xi is a constituent

of dx so

1 ^ [Ox, Xi] = [0, XXi]

where [ , ] denotes the usual inner product of characters. Hence d

is a constituent of xXi- This yields

re2 < deg 6 = deg xxi = (deg x)(deg xi).

Clearly at least one of deg x or deg xi is >« and this is the required

contradiction.



i966] CHARACTER KERNELS OF DISCRETE GROUPS 491

By Theorem F of [3] groups G with 6(G) = re2 all have abelian sub-

groups of index ^J(2n2), where J is the function associated with

Jordan's theorem on finite linear groups. Thus $„(G) > 1 is a rather

restrictive condition for a group to satisfy. We discuss now a method

of constructing a class of groups G with 6(G) >re and $„(G) > 1.

Let p be a fixed prime and let e^p. Suppose we have e groups 77,-

each having a central subgroup Zi = (z/) of order p. Set

at = minimal degree of irreducible character di of 77, with Z, C£ ker 6i\

bi = 6(77,);

d = b(Hi/Zi).

We suppose further that for all i

(I) (hlcA > TJ (bj/aj).
j=i

Let U be an abelian group of type (p, p) generated by u, vEU.

We define a homomorphism of

Zi X Z2 X ■ ■ ■ X Ze -* U

by Zi-^uv*. This is clearly onto. Let the kernel be N. Then N is a

central and hence normal subgroup of 77 = 77iX772X ■ ■ • X77e. Set

G = H/N so that G3 U, a central subgroup of type (p, p). Set re + 1

= n«i- We show that vE®n(G) and that 6(G) >re.

Let 6 be an irreducible character of G. Then since U is central

d\ C/=(deg 0)X where X is a linear character of U. Hence some sub-

group of order p of U is the kernel of 0. The subgroups of U are of

course (v) and (uv*) for *=1, 2, • • • , p. Since G is a homomorphic

image of i7, 6 can be viewed as a character of H. In i7 we write

6 = 8i82 ■ ■ ■ de where di is an irreducible character of 77*.

Supposefirst that (v)% ker0. Then forsomei = 1, 2, ■ • • ,pwehave

(wz^Cker d. Then clearly in 77, z<£ker di. Hence deg di^ct and of

course for J9*i, degdj^bj. Thus

deg e ̂  cn bj)(a/bi) < n«/=»+1.

Hence deg 0=« and n£$„(G). Now choose 5 to be a character of

G/(») which is faithful on cyclic U/(v). Viewed in 77 we see that for

all i, z,£ker0f. Hence deg0t^at- and so deg0^ IJa^re + 1. There-
fore 6(G) > n and the result follows.

Using the above we can easily construct some examples.

Example 6. Let each 77* be a nonabelian group of order p3. Then
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ai = p, bi = p and c, = l and so equation (1) is satisfied. This yields

groups G nilpotent of class 2.

Indecomposable nonnilpotent groups with nontrivial kernels can

be obtained as follows.

Example 7. Let P denote the quaternion group of order 8 if p = 2

or the nonabelian group of order p3 and period p ii p is odd. Let Z be

the center of P. We have \Z\ —p. Let A denote the group of auto-

morphisms of P which centralize Z. A is easily seen to be isomorphic

to the Symplectic group Sp,ip) whose order is Pip + l)ip — 1). Let

aEA be of prime order q^p and let H be the semidirect product of

P by the cyclic group (a). Thus P is normal in H with index q and

Z is central in H.

Let x be an irreducible character of H. By Proposition 1.2 of [2],

either x\P is irreducible or x|P is the sum of q conjugate char-

acters under the action of (a). In the first case deg x = 1 or p. In the

second case let <j> be an irreducible constituent of %\P. If deg<j> = p

then <p vanishes off Z. Since a centralizes Z, <pa = (p, a contradiction.

Hence deg 4> = 1 and deg x = 2- Thus H has characters of degree 1, p

and q only. Moreover if H = H, we have easily a, = p, bi = maxip, q)

and c, = g.

If p = 2 choose q = 3. Then biH)=3 and ZCfc(H). If p>2 then
choose q to divide pip + l)ip — l) so p>q. Hence in this case equation

(1) is satisfied and the group G constructed has the required property.

References

1. S. A. Amitsur, Groups with representations of bounded degree. II, Illinois J.

Math. 5 (1961), 198-205.
2. I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree,

Canad. J. Math. 16 (1964), 299-309.
3. -, Characterization of groups in terms of the degrees of their characters,

Pacific J. Math. 15 (1965), 877-903.
4. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer.

Math. Soc, Providence, R. I., 1956; rev ed., 1964.

5. C. Rickart, Uniqueness of norm in Banach algebras, Ann. of Math. 51 (1950),

615-628.

University of California, Los Angeles


