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The recent paper of Steinberg [7] on the multiplicators of the

finite simple groups of Lie type, the classical determination of the

multiplicators of the alternating groups by Schur [6], a similar re-

sult of Janko for his group [3] and the (unpublished) work of J. G.

Thompson on the Mathieu groups cover all but three families of

known simple groups. In this paper we give a simple determination

of the multiplicators for two of these families, namely the Suzuki

groups and the Ree groups of characteristic three. Our results are

well known for the Suzuki groups, with the exception of the one of

smallest order, while the determination for the Ree groups of char-

acteristic three has been accomplished by J. H. Walter with the use

of some deep theorems of modular character theory. However, our

main tool is an elementary lemma of "Lie type" involving a very

crude numerical estimate. In addition, we calculate the multiplicator

for the smallest Suzuki group. Furthermore, preliminary investiga-

tions indicate that our methods might show that the multiplicators,

or at least their 2-primary components, are trivial for the remaining

family of Ree groups of characteristic two defined over GP(22n+1) for

all n^N, where N is fairly small. Our lemma deals with a single

automorphism; a suitable generalization of this result to a pair of

commuting automorphisms would suffice to prove the preceding

statement. Our main results are:

Theorem 1. The Suzuki groups, with the exception of the one of

smallest order, and the Ree groups of characteristic three have trivial

multiplicators.

Theorem 2. The multiplicator of the smallest Suzuki group is ele-

mentary of order four. Furthermore, the multiplicator of its automor-

phism group is trivial.

With regard to notation, the commutator xrly~1xy of two elements

of a group is denoted by [x, y]. The use of the Lie ring associated

with a nilpotent group is standard [2]. Finally all groups mentioned

are assumed to be finite.

The proof of Theorem 1 depends upon the following key lemma.
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Lemma. Let G be a p-group of class at most p + 1 whose commutator

quotient group G/G' is elementary abelian of order q = pn. Let a be an

automorphism of G of order q — 1 which acts irreducibly on G/G'. If a

has a nonidentity fixed point in G, then g = 4, 8 or 9.

Proof. Let G = Gi, G2, • • • be the lower central series of G, so that

by our hypothesis Gp+2=1. Since G/G' is elementary, it also follows

that Gi/Gi+i is elementary for all i. Let L = Y*=l ^»> where Li

= Gi/Gj+i, be the Lie ring associated with the lower central series of

G. In this case, L is a Lie algebra over the field F with p elements and

as is generally true of the associated Lie ring, L is generated by Li.

Moreover, a induces an automorphism of this algebra, which we shall

denote by the same letter, and a leaves each Lj invariant. Further-

more, a is faithfully represented on Li = G/G' by P. Hall's theorem

[2, Theorem 12.2.2] as p and q — 1 are relatively prime. By assump-

tion a acts irreducibly on Li and consequently the eigenvalues of a on

Li in an algebraic closure of FareX,Xp, • • • , Xp" , where X is a primi-

tive (q — l)st root of unity. Since I is a Lie algebra over F and is

generated by L/, the eigenvalues of a on Lm are of the form JJJLi Xp°<,

where O^a.^re —1. Note that we may assume re>l, for otherwise

G/G' would be cyclic and hence G itself would be cyclic, in which case

the lemma would hold trivially.

If X has a nontrivial fixed point on G, then it has a nonzero fixed

point on some Lm, which implies that X has 1 as an eigenvalue on Lm.

In this case, it follows that

m

Y P°< m OO" - 1)
i-l

for suitable integers Oj, Oga,-^re —1, and 1 Sm^p-\-l. Thus to prove

the lemma, it will suffice to show that the above congruence implies

that q=pn = A, 8 or 9.

First of all, observe that

m

Y Pa< ̂ (p + Vp"-1 <2(Pn~ i)
i-l

unless 3 = 4. Thus either the lemma holds or our congruence implies

the equality

m

Y pa< = pn - i.

i=l

However, the right hand side of this equation is congruent to p — l

modulo p, thus forcing at least p — 1 of the exponents at to be 0. In
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particular, m'Sip — 1 and since ra>l, we have, in fact, m>p — 1. Thus

our equality reduces to either ip — l)+pa=pn — l or p — l+pa+ph

= pn — l, according as m = p or m = p + l, where O^a, b^n — 1. The

only solutions of these relations are 3 = 4 or q = 4, 8, 9 respectively,

and the lemma is proved.

We now apply the lemma to prove Theorem 1. Let 5 be one of the

simple groups specified in Theorem 1. Properties of these groups are

discussed in [4], [8] and [9]. In order to prove the theorem it will

suffice to show that the only central extension of a cyclic group Zp of

order p by 5 is a direct product. By a theorem of Gaschiitz [2, Theo-

rem 15.8.6], it is enough to prove that any central extension of Zp

by iV(P), the normalizer in S of a Sylow ^-subgroup P oi S, is a direct

product.

It is known that if p is not the characteristic of S, then either P

is cyclic or S is a Ree group, p = 2, and P is elementary abelian of

order 8. In the first case, A^(P) is a Frobenius group with kernel CiP)

and I iV(P): C(P) I =2, 4 or 6, while in the latter case, 7V(P) is of
order 21-8 and P is self-centralizing. In any of these cases it is trivial

to verify the desired splitting. Thus the only case of any interest is

that in which p is the characteristic of 5.

In this case, P is of class p and P/P' is elementary of order q = pn,

where ra ̂  3 and p = 3 if S is a Ree group and ra ̂  5 and p = 2 if 5 is a

Suzuki group (since by assumption we are excluding the smallest

Suzuki group). Furthermore, NiP) =PA, where A is cyclic of order

q — 1 and acts faithfully and irreducibly on P/P'. Let E be a central

extension of Zp by PA and let G be the unique Sylow ^-subgroup of

E, so that G/Zp is isomorphic to P. Then either G/G' is isomorphic to

P/P' as an ^4-module or else G/G' has order pn+1 and ZP%G'.

Suppose first that ZpCT_G''. If G/G' is elementary, then G, and hence

E, splits. If G/G' is not elementary, then the elements of order divid-

ing p in G/G' form an elementary A -invariant subgroup of order pn

containing ZPG'/G'. But G/ZPG' is isomorphic to P/P' as an bi-

module. Since A acts irreducibly on P/P', this is a contradiction. Thus

ZPQG'. We conclude that a generator a of A induces an automor-

phism of G of order q — 1 which acts irreducibly on G/G' and that

G/G' is elementary of order q. Since P has class at most p, G has class

at most p + 1. Since q>9, the lemma applies to yield that a has no

nontrivial fixed points on G, contrary to the fact that a fixes Zp. This

proves Theorem 1.

We turn now to the smallest Suzuki group and preserve the above

notation. In this case, p = 2, ra = 3 and NiP) has the same structure

as above. Furthermore, the multiplicator of S is again a 2-group.
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Since P is disjoint from its conjugates in S, it follows from [l, Theo-

rem XII, 10.1 ]2 that the multiplicator H2(S, C*) of 5 is isomorphic

to the 2-primary component of the multiplicator of N(P).

We shall first argue that this latter component has order at most

four. To do this, it is sufficient to show that if £ is a central exten-

sion of a 2-group B by N(P) such that B has no proper supplement

in E, then B has order at most four. It is clear that any such sub-

group B is contained in the Frattini subgroup of G, the unique Sylow

p-subgroup of E. We first argue that BC.G'. If not, let B0 be a maxi-

mal subgroup of B containing B(~\G'. Then the argument in the proof

of Theorem 1 which shows that ZPQG' can be repeated for E/B0 to

prove that B/B0CZ(G/B0)'. Thus BQG'B0, so BQ(Br\G')BBQB0, a

contradiction. Hence G/G' is isomorphic to P/P' and so is elementary

of order 8. Furthermore, since P is of class 2, G is of class at most 3,

and again the associated Lie ring L = Li©L2©L3 is a Lie algebra over

F. Moreover, a generator a of A induces an automorphism of L of

order 7, leaving each Li invariant and having eigenvalues X, X2, X4 on

Li, where X is a primitive seventh root of unity. Thus the eigenvalues

of a on L2 are among X3, X6, X6, so that, in particular, a has no non-

trivial fixed point on L2. This implies that B=L3.

We extend L to a Lie algebra over F(X), which we still denote by L,

and choose a basis x, y, z of Li consisting of eigenvectors for the eigen-

values X, X2, X4 of a respectively. Using the defining relations for a

Lie algebra, it follows that L3 (which is L3) is spanned by the eight

vectors [xyz], [yzx], and all [mzjw], where u and v run over all dis-

tinct pairs among x, y and z. Since a fixes L3 elementwise, these last

six vectors must be 0, for otherwise a would have an eigenvalue dis-

tinct from 1 on L3. We conclude that L3 is at most of dimension 2 and

hence that B has order at most 4.

In view of the result of Cartan-Eilenberg stated above, it is there-

fore enough to prove Theorem 2 to exhibit a central extension E of

B by N(P) with the required properties in which B is elementary of

order 4. A group E satisfying these conditions is defined by gener-

ators y, xj, 1 =^^=3 and relations:3

2 a 2
Xi =  X23X122,      X2 =  Xi3X23Xi2iXi22,      X3 =  Xi2Xi3X23,

Xl31 =   Xl22,   Xi33  =   Xi2lXl22,   X232 =  X121,   X233  =   Xi22,   Xl23 =  X121,   X23l  =1,

7 V V V
y  = 1,   xi = x2,    x2 = x3,    x3 = X1X2,

2 The applicability of this result was pointed out to us by R. Swan.

' For simplicity we set x^ = [xi, xf], Xijk — [xi, Xj, xk\.
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the derived group of the group of (xi, X2, X3) is of exponent two and

(xi, x2, x3) is of class at most three.

In this group E we choose P = (xi2i, Xm), G=(xi, x2, x3) and

A = (y).
Finally let A be the automorphism group of S, the smallest

Suzuki group. By Theorem 11 of [8], |.4:.S| =3, so that a Sylow 3-

subgroup of A is cyclic of order 3. Thus the Sylow subgroups of A

are cyclic for all odd p and so the multiplicator of A is a 2-group by

a well-known result of Schur. It follows therefore as with S that the

multiplicator of A is elementary of order at most 4.

We refer once again to the Lie algebra L over P(X) and the auto-

morphism a of L of order 7 and preserve the above notation. In A

there exists an element fi of order 3 such that as = ai. We consider the

action of the group (a, fi) on L. To show that A has a trivial multi-

plicator, it will suffice to prove that {a, P) has no fixed points on L3.

By the preceding analysis, it will be enough to show that P has no

fixed points on the space spanned by [xyz] and [yzx]. Since the eigen-

spaces of a on Zi are one-dimensional, /3 must permute them, and so

we can choose the basis x, y, z of Li with x" = y, y9 = z, and z" = x. But

then P transforms [xyz] and [yzx] into [yzx] and [zxy] = [xyz]

+ [yzx] respectively, from which the desired conclusion follows at

once. This completes the proof of Theorem 2.
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