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Levi has obtained [l] for [yp] and [uv] sufficiency conditions for

membership of a power product in the ideal, which tests member-

ship, in certain cases, by a calculation using only the weight and de-

gree of the pp. In this paper we show Levi's conditions for [uv] are

necessary as well as sufficient, in contradistinction to [yp] (see [2]).

(This, of course, will show that the answer to Ritt's question [5,

p. 177] "What is the least power of u&j which is in [wz>]?" isi+j+l.)

Levi's sufficiency condition can be stated in the following manner:

If the pp. P has a negative number in its weight sequence, P£ [uv].

Since it is known [2, Theorem III, p. 426] that one need only con-

sider pp. with zero excess weight, for the necessity it will suffice to

prove the

Theorem. If the pp. P has zero excess weight and a non-negative

weight sequence, P E [uv].

We recall some of the definitions of [l ] and [2] as well as introduce

some notation for this paper.

Let U(i, r, k) represent the product w,-1+rMt-2+r • • • uik+r. The signa-

ture of P = Z7(t, 0, m) V(j, 0, ra) is im, ra) and the weight of P is zZi«

+ zZje- F°r all possible pairs im', ra') where l^m' ^m, 1 ̂ «' ^ra, we

consider the weight of a factor of P of least weight and signature

im', n'), minus m'n'. This set of numbers we call the weight sequence

of P. If all the numbers of the weight sequence are non-negative, we

say that P has a non-negative weight sequence. The weight of P

minus »rara is called the excess weight of P.

We facilitate our work by introducing the new variables Ui = Ui/i\

and Vj = Vj/j\. For these variables, we have («,-)' = (i + l)w,-+i and

iv/)' = (J + l)vj+i. To simplify the notation, we write u,, v, for «,-, ir-

respectively.

If P is a pp. of signature im, w) and of zero excess weight, then1

P = cumVn\, and, calling c the multiplier of P, we write w(P)=c.

Finally, let Dk = dk/idvhdvh ■ ■ ■ dvh).

Lemma I. Assume the pp. A is of zero excess weight and is free of v0.

If A =ukPiu, v/), where Piu, v) is a pp. in u and v, then
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1 Use [l, Theorem 1.1, p. 543] with the fact that there is a unique a term of the

same signature and weight as P.
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k\m(ukP(u, vi)) = (-l)hJ^m(V(i, I, k)DkP(u, v))

where the summation is over all ordered sets, (ii, • • • , ik), of non-nega-

tive integers.

Proof. First we note the equation is meaningful since every term

does have zero excess weight. It has been pointed out, [4], that the

proof given in [2, Lemma I, p. 429] can be used to show that if

U(i, 0, m) V(j, 0, re) has zero excess weight, m(U(i, 0, m) V(j, 0, «))

= m(uoU(i, 0, m)V(j, 1, re)).2 This constitutes the statement of our

lemma for k = 0. We proceed with the proof using induction on k. Let

A=uk+iP(u, vi) have zero excess weight. Both ukP(u, vA and

V(i, 1, k)DkP(u, v) are in [uv]. Thus3

k\ukP(u, Vi) m (-1)* Y V(i, 1, k)DkP(u, v)

and, taking derivatives of both sides

(k + l)\uk+iP(u, vi) + k\uk Y ujdP(u, vi)/duj + k\uk Y vjdP(u,Vi)/dv}-

= (~l)kJlV(i, I, k)ujdDkP(u, v)/dUj

+ (-1)* Y V(i, 1, k)vjdDkP(u, v)/dvj

+ (-l)kJ^(V(i,l,k))'D*P(u,v).

By the induction hypothesis, the multipliers4 of the first sums on the

two sides of the congruence are equal and the multiplier of the second

sum of the left equals

(-1)*»Z W(i, l,k- l)vik+i(ik + l)D*-idP(u, v)/dvi]r.i

+ (-l)km Y V(i, I, k)(j A- l)vjD"dP(u, v)/dvj-i

= (-l)km Y kV(i, l,k- l)vit+2(ik A- 2)DkP(u, v)

+ (-l)km Y V(i, I, k)(ik+i + 2)vik+1+iDk+*P(u, v).

Finally, since the second sum on the right equals

(-1)* Y fo+i + IMi, l,k + l)Dk+*P(u, v)

2 The referee supplied the following alternative proof. Let h be the isomorphism of

F[uo, Mi, • • • ; vo, vi, • • • ] obtained by raising each subscript on a v by 1 and let

h[uv] stand for the image of [md] = (md, u\V-\-uv\, Uiv-\-UiVi-\-uv2, ■ • • ) under this

isomorphism. Then, obviously, uh[uv]E[uv]. Let UV^c^v^luv]. Then Uh(V)

— cumvl1+l (h[uv]), whence uUhiV) = cum+lv"  , [uv], Q.E.D.

s Throughout the proof of Lemma I, each summation is over all ordered sets of

nonnegative integers of the symbols ia and_/p which appear in the terms being summed.

4 The multiplier of a sum of terms is defined to be the sum of the multipliers of

the individual terms.
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and the third sum on the right equals

(-1)* JZ kVii, l,k- l)iik + 2)vtk+2DkiPu, v),

we have

ik + 1) Imiuk+iPiu, vi)) + i- l)km zZ (4+i + 2)Vii, l,k+ l)D«+^Piw, v)

= i-lfm zZ (ik+i + l)F(i, 1, k + l)Dk+^Piu, v)

which completes the proof.

Lemma II. // the pp. A, of signature idi, d2), has a non-negative

weight sequence and zero excess weight, A = i — l)'cud,v^l, where t is the

u-weight of A and c > 0.

Proof. If di=l, A is either uv*2 or Uivvf'1, and in each case the

lemma is easily seen to be true. We complete the proof employing in-

duction on di.

We assume for the moment that A is free of v0 and use Lemma I,

noting that every term on the right side of the congruence has u-

degree di — 1 and w-weight k less than the w-weight of A. Thus there

is no cancellation among the numbers on the right, as either the in-

duction hypothesis applies or the pp. has a negative term in its weight

sequence and, being in [uv], its multiplier is zero.

The proof of this case iA free of Vo) will be complete once we pro-

duce a pp. on the right side of the congruence with a non-negative

weight sequence. If the a-factor of A is vai+iva2+i ■ ■ ■ vadi+i, iai^a2

^ • • • Saa/) such a term is

Q = Via, I, k)dkPiu, v)/idvaidva2 • • • dvak).

Assume this false and let 5 be a factor of Q with negative excess

weight. If we can show that 5 involves a v, with f^ak+l, we may

assume, without loss of generality, that 5 is a multiple of Via, 1, ft).

Since Via, 1, ft) is a factor of A, we see that 5 must involve some vj

from the ftth partial derivative. Assume S=UV has ra-degree = &,

M-weight = wu and involves only Vj with j^ak. Then ak+i = ak and we

define r, s, and e by ar<aT+i = ak = ak+s = e<ak+s+i. Since 5 is of

negative excess weight, b>e, and we see that T=UVia, 1, r)iv/)s

also has negative excess weight; i.e. bis+r)>wu+ai+ ■ ■ ■ +ar+r

+se. Then T*= UukVia, 1, ft + s) has excess weight wu + k+ai+ • • •

+ar+e(s + ft-r)+ft + s-(& + l)(ft+5)<(ft-r)(e+l-&)^0. But this

is a contradiction since T*, as a factor of A, cannot have negative

excess weight.

Thus 5 must involve a vj v/ithj^ak + l and we may assume that 5,

of signature im, n) and weight w, is equal to Via, 1, ft)P(w, v). Now
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S* = V(a, 1, k)T(u, Vi)uk is of signature (w + 1, re) and weight w-\-n

— kArk=wArn, and since S* is a factor of A, the weight of S*

=• (m-\-l)n. That is, w-\-n^(mA-l)n or w^mn. This contradicts our

assumption that 5 was of negative excess weight and consequently

there is no such factor of Q. Using the symmetry of [uv], this com-

pletes the proof of the theorem of this paper.

To obtain the stronger result of Lemma II, if A involves vo, we

interchange the roles of u and v and find A=( — l)rcvd2udl where

c>0 and r is the w-weight of A. By the theorem of [3],

. . r+did}     di d2

A = (— 1) cu  vdi,

and since A is of excess weight zero, (re-weight of A) Ar (v-weight of A)

= tA-r = did2. Thus (-l)'+** = (-l)«.
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