A PROPERTY OF THE REAL NOT REGULAR FUNCTIONS C^{∞}

HANS HORNICH

Let f be $\in C^{\infty}$ on the interval $I=[0, \mathfrak{L}], \mathfrak{s}>0$ and

$$
\begin{equation*}
\lim \sup \left(\left|f^{(n)}(0)\right| / n!\right)^{1 / n}<+\infty . \tag{1}
\end{equation*}
$$

If f is not regular for $x=0$, i.e. if f cannot be expanded into a power series in x on $[0, \delta]$ for any $\delta>0$, then there exists a $n(K)$ for every $K>0$ such that f cannot be a solution of a linear differential equation on I

$$
\begin{equation*}
y^{(n)}+\sum_{i=0}^{n-1} \sigma_{i} y^{(i)}=\varphi \tag{2}
\end{equation*}
$$

with any \&-integrable functions σ_{i}, φ on I with

$$
\left|\sigma_{i}(x)\right|<K, \quad|\varphi(x)|<K
$$

for $x \in I$ and $n>n(K)$.
Proof. If f satisfies a differential equation (2) then

$$
\begin{equation*}
\bar{f}(x)=f(x)-\sum_{i=0}^{n-1} f^{(i)}(0) x^{i} / i!=f(x)-P(x) \tag{3}
\end{equation*}
$$

satisfies a differential equation

$$
\begin{equation*}
\bar{y}^{(n)}+\sum_{i=0}^{n-1} \sigma_{i} \bar{y}^{(i)}=\varphi-\sum_{i=0}^{n-1} \sigma_{i} P^{(i)}=\bar{\phi} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{f}(0)=\bar{f}^{\prime}(0)=\cdots=\bar{f}^{(n-1)}(0)=0 . \tag{5}
\end{equation*}
$$

Now

$$
\begin{equation*}
\sum_{i=0}^{n-1} \sigma_{i} P^{(i)}=\sum_{i=0}^{n-1} \sigma_{i} \sum_{j=i}^{n-1} f^{(j)}(0) x^{j-i} /(j-i)! \tag{6}
\end{equation*}
$$

and with

$$
\max _{i} \sup _{x \in I}\left|\sigma_{i}(x)\right|=S
$$

Presented to the Society, April 12, 1965; received by the editors March 12, 1965.
we get the inequality

$$
\begin{equation*}
\left|\sum_{i=0}^{n-1} \sigma_{i} P^{(i)}\right| \leqq S \sum_{i=0}^{n-1} \sum_{j=i}^{n-1}\left|f^{(j)}(0)\right| x^{j-i} /(j-i)! \tag{7}
\end{equation*}
$$

Because of (1) we have for an appropriate $A>1$

$$
\begin{equation*}
\left|f^{(j)}(0)\right| \leqq A^{j} j! \tag{8}
\end{equation*}
$$

so

$$
\begin{align*}
\left|\sum_{i=0}^{n-1} \sigma_{i} P^{(i)}\right| & \leqq S \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} A^{j j}(j-1) \cdots(j-i+1) x^{j-i} \tag{9}\\
& \leqq S A^{n-1} n^{2}(n-1)!
\end{align*}
$$

for $x<1$.
We prove the following
Lemma. For the solution \bar{y} of a differential equation

$$
\begin{equation*}
\bar{y}^{(n)}+\sum_{i=0}^{n-1} \sigma_{i} \bar{y}^{(i)}=\bar{\phi} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{y}(0)=\bar{y}^{\prime}(0)=\cdots=\bar{y}^{(n-1)}(0)=0 \tag{11}
\end{equation*}
$$

the following inequality is valid:

$$
\begin{equation*}
|\bar{y}(x)| \leqq \phi £ x^{n-1} /\left(1-\sum_{i=0}^{n-1} S_{i} £^{n-i} /(n-i)!\right)(n-1)! \tag{12}
\end{equation*}
$$

on $I=[0, \mathfrak{\&}]$ with

$$
S_{i}=\sup _{x \in I}\left|\sigma_{i}(x)\right|, \quad \phi=\sup _{x \in I}|\bar{\phi}(x)|
$$

where \mathfrak{L} is so small that

$$
\begin{equation*}
\sum_{i=0}^{n-1} S_{i} \mathscr{L}^{n-i} /(n-i)!<1 \tag{13}
\end{equation*}
$$

We put

$$
\sup _{x \in I}\left|\bar{y}^{(n-1)}(x)\right|=Y
$$

then it follows that

$$
\begin{equation*}
\left|\bar{y}^{(i)}(x)\right| \leqq Y x^{n-1-i} /(n-1-i)! \tag{14}
\end{equation*}
$$

for $i=0, \cdots, n-1$.
Now from (10) we get

$$
\bar{y}^{(n-1)}(x)=\int_{0}^{x}\left[\bar{\phi}(t)-\sum_{i=0}^{n-1} \sigma_{i}(t) \bar{y}^{(i)}(t)\right] d t
$$

and because of (14)

$$
\begin{equation*}
\left|\bar{y}^{(n-1)}(x)\right| \leqq \phi x+\sum_{i=0}^{n-1} S_{i} Y x^{n-i} /(n-i)! \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
Y \leqq \phi \mathcal{L}+\sum_{i=0}^{n-1} S_{i} Y \mathcal{L}^{n-i} /(n-i)! \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\bar{y}^{(n-1)}(x)\right| \leqq Y \leqq \phi \mathcal{L} /\left(1-\sum_{i=0}^{n-1} S_{i} \mathcal{L}^{n-i} /(n-i)!\right) \tag{17}
\end{equation*}
$$

and finally by integration (12).
We apply this Lemma to (4); if $\mathfrak{\&}$ is supposed to be so small that

$$
\begin{equation*}
\mathfrak{£}<1, A £<1 \text { and } S(e \mathscr{L}-1)<1, \tag{18}
\end{equation*}
$$

then because of (9)
(19) $|\bar{y}(x)| \leqq\left[K+S n^{2} A^{n-1}(n-1)!\right] \lesssim x^{n-1} /(n-1)!\left[1-\left(e^{\mathcal{L}}-1\right) S\right]$.

Now f is not regular for $x=0$; therefore, for every natural number m we have

$$
\begin{equation*}
\sup _{x \in I}\left|f(x)-\sum_{i=0}^{m-1} f^{(i)}(0) x^{i} / i!\right|=h_{m}>0 \tag{20}
\end{equation*}
$$

and

$$
\inf h_{m}=h>0 .
$$

There exists, for every m, an x_{m} on I with

$$
\begin{equation*}
\left|f\left(x_{m}\right)-\sum_{i=0}^{m-1} f^{(i)}(0) x_{m}^{i} / i!\right| \geqq h . \tag{21}
\end{equation*}
$$

The right side of (19) becomes arbitrarily small for $n \rightarrow \infty$; there fore, an $n(K)$ exists for a given K such that

$$
\begin{equation*}
|\bar{y}(x)|<h \tag{22}
\end{equation*}
$$

holds for $x \in I$, that is, for all functions σ_{i}, with

$$
S \leqq K, \quad|\varphi(x)|<K
$$

and $n>n(K)$. The inequalities (19) and (21) are both valid only if $m<n(K)$ holds in

$$
\bar{y}(x)=f(x)-\sum_{i=0}^{m-1} f^{(i)}(0) x^{i} / i!.
$$

We add some consequences. Let f be $\in C^{\infty}$ on $I=[0, \mathfrak{\&}]$. If
[i] for every point $x \in I$ there is

$$
\begin{equation*}
\lim \sup \left(\left|f^{(n)}(x)\right| / n!\right)^{1 / n}<+\infty \tag{23}
\end{equation*}
$$

and
[ii] if there exists a sequence of linear differential equations of increasing order with uniformly bounded coefficients such that f satisfies every differential equation of this sequence, then f is regular in every point of I.

This is an immediate consequence of our theorem.
The validity of (23) in every point of I is a necessary condition for the regularity of f.

If f satisfies a linear differential equation with uniform bounded coefficients for every order $n>n_{0}$, then (23) is valid for every point of I and f is regular on I.

It is necessary to give the proof for the first part only; if (23) is not valid for a point x_{0} on I, then there exists a subsequence $\left\{n_{K}\right\}$ of natural numbers such that $\left|f^{\left(n_{K}\right)}\left(x_{0}\right)\right|$ are increasing in such a way that the equation (2) cannot be true for the point x_{0} for sufficiently large n_{K}.

Catholic University of America

