
ENUMERATION OF MIXED GRAPHS1

FRANK HARARY AND ED PALMER

A mixed graph contains both ordinary and oriented lines. For

example the graph in Figure 1 is a mixed graph with two ordinary

Figure 1

and three oriented lines. An ordinary graph may be regarded as a

mixed graph with no oriented lines, and an oriented graph as a mixed

graph with no ordinary lines. Further, any digraph may be con-

sidered as a mixed graph by changing each symmetric pair of lines

to an ordinary line.

Our object is to derive a formula which enumerates mixed graphs

on p points with respect to the number of ordinary and oriented lines.

For graphical definitions we refer to [4], [5].

Let mpqr be the number of mixed graphs with p points having

exactly q oriented lines and r ordinary lines. Then the polynomial

mp(x, y) which enumerates mixed graphs with p points according to

both the number of ordinary and oriented lines is defined by

(1) mv{x, y) = 2Z nip^y7,
<l.r

where

From Figure 2, we see that for p = 3 the formula is

m3(.T, y) = 1 + x + 3x2 + 2x3 + y + 2xy + 3xly + y2 + xy2 + y3.

For the derivation of the formula for mp(x, y), we use a slight modi-

fication of Polya's classical enumeration theorem, [8], in which we

use two "figure counting series" rather than one.
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Figure 2

Let X= {l, 2, • • • , p} and F= {0, l} and denote the set of

ordered pairs (i,j) of distinct elements of X by Xl2]. The set of func-

tions from X121 into F is denoted as usual by Yx   . Since each func-
f2l - •

tion / in Yx represents a digraph with say a oriented and r sym-

metric pairs of lines, / also represents a mixed graph with q oriented

lines and r ordinary lines.

The symmetric group Sp acting on X induces as in [2] the "reduced

ordered pair group" Sf] acting on X[2]. With the identity group £2

acting on F, we form the power group E%p acting on Fx ; see [6],

[7]. Then any two functions/ and g in Yx are equivalent with re-

spect to the power group E%p2 if and only if their mixed graphs are

isomorphic.

We may now develop the formula for enumerating mixed graphs.

Let a be any permutation in Sv and let a' be the permutation in

S% induced by a. We define the converse of any given cycle in the

disjoint cycle decomposition of a' as that cycle of a' which permutes

all ordered pairs (i,j) such that (J, i) is permuted by the given cycle.

A cycle of a' is called self-converse if (i, j) is permuted by the cycle

whenever (J, i) is.

Let zT and zs be distinct cycles of length r and 5 in the disjoint cycle

decomposition of a. If r is odd, then zr induces (r —1)/2 pairs of con-

verse cycles of length r in a'. If r is even, then zr induces (r —2)/2

pairs of converse cycles of length r and one self-converse cycle of

length r. Together zr and zs induce d(r, s) pairs of converse cycles of

length m(r, s), where d(r, s) and m(r, s) are the g.c.d. and l.c.m.

respectively of r and 5.

It is most convenient to use here the notation of [6] involving the

power group of two permutation groups. Suppose y = (a'; (0)(1)) is
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the permutation in the power group £f"2 induced by a', and that

7/=/ for some/ in Yxl2\ Then the functional values of / are constant

on each cycle of a'. Hence there are exactly three possibilities for the

contribution to the mixed graph represented by / by each pair of

converse cycles of length r in a':

(1) no lines of either kind occur, or

(2) there are r ordinary lines, or

(3) just one of these two cycles contributes r oriented lines.

Further each self-converse cycle of length r contributes no lines at all

or rfl ordinary lines.

Thus in the terminology of Polya [8], we see that (l+2x+y)1/2

serves as the "figure counting series" to be substituted for all those

variables in the cycle index Z(Sf]) which specifically correspond to

pairs of converse cycles. And l+y1/2 is the "figure counting series"

for the variables corresponding to self-converse cycles. The radical in

(l+2x+y)1/2 disappears on substitution because converse cycles

must occur in pairs. Similarly, the radical in 1+y1'2 disappears be-

cause self-converse cycles necessarily have even length.

To effect the appropriate substitutions of these figure counting

series, we write the formula from [2] for Z(S]f) with a slight modi-

fication of the variables: both ak and bk appear for reasons explained

below.

z(s?) = - z {n «rw,w- n (<W(a)- n * (Mf)
/•! «ES.     V k odd * even k \     2    /

(2)
n2(J(r,s)jr(<.)ys(o)^

where as usual jkifit) is the number of cycles of length k in the disjoint

cycle decomposition of the permutation a.

For convenience we denote by Z(Sp , (l+2x+y)1/2, 1+y1'2) the

result of substituting (l+2xk+yk)112 for each ak in (2) and \ + {yk)in

for each bk. This is, of course, the same as substituting 1 -\-2xk-\-yk for

each a\ and 1 +yk for each 62*. As indicated above, every occurrence

of a variable ak will carry an even exponent (since converse cycles

come in pairs) and each appearance of a variable bn will have n even

(because self-converse cycles have even length).

Then by applying Polya's theorem [8], the desired counting for-

mula is obtained.

Theorem. The enumeration polynomial for mixed graphs on p points

is given by

(3) mp(x, y) = Z(SP\ (1 + 2x + y)'\ 1 + y'").
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As an example we give some of the details for p = 3. First we have

the cycle index formulas:

Z(S*) = i(yi + 3yiy2 + 2y3),
[2] 6 2 2

Z(Sz   ) =   K«l + 3*2«2 + 2az).

Substituting the figure counting series (l+2x-f y)1/2 and 1+y1'2,

we obtain

»i(*. y) = |((1 + 2x + yf + 3(1 + y)(l + 2x* + y2) + 2(1 + 2x* + f))

= 1 + x + 3x2 + 2x3 + y + 2xy + 3xly + y2 + xy2 + y3,

which agrees pleasantly with the mixed graphs shown in Figure 2.

The counting polynomials gp(x) and dp(x) which enumerate graphs

and digraphs were derived in [2], and that for oriented graphs, op(x),

in [3]. We conclude by observing that each of these three polyno-

mials is easily obtained from mp(x, y), which is thus a simultaneous

generalization of three previous enumeration formulas:

dp(x) = mp(x, x2),

(4) op(x) = mp(x, 0),

gp(y) = mp(0, y).

For p = 3, we find from (4) that:

d3(x) = ot3(x, x2) = 1 + x + 4x2 + 4x3 + 4x4 + x6 + x6,

o3(x) = m3(x, 0) = 1 + x + 3x2 + 2x3,

gz{y) = m3(0, y) = 1 + y + y2 + y3.

These are quickly verified by Figure 2.

A complete digraph has either an oriented line or a symmetric pair

of lines joining every pair of points. The digraph in Figure 3 is a

complete directed graph on five points with three symmetric pairs

and seven oriented lines.

Figure 3
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Let cpqr be the number of complete digraphs with p points having

exactly q oriented lines and r symmetric pairs. Then the polynomial

cp(x, y) which enumerates complete digraphs with p points according

to both the number of oriented lines and symmetric pairs is defined by

(5) cp(x, y) = ^2cpqrx"yT

where q-\-r = (l).

From Figure 4, we see that for p = 3 the formula is c3(x, y)=2x3

+ 3x2y+xy2-r-y3.

A A (h a

A
Figure 4

The enumeration formula for cp(x, y) is easily obtained by modify-

ing the formula for mixed graphs. The integer 1 in each of the two

figure counting series (l+2x+y)1/2 and l+y1/2 represents the pos-

sibility of having no line joining a pair of points. Since in a complete

digraph there is always either an oriented line or a symmetric pair

joining a pair of points, the appropriate figure counting series are

(2x+y)1/2 and y1/2. Thus we obtain the following corollary.

Corollary. The enumeration polynomial for complete digraphs on p

points is given by

(6) cp(x, y) = Z(SP ,2x + y    ,y    ).

An immediate consequence of this corollary is that the number tp

of tournaments on p points is
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a result previously obtained by Davis [l].

The total number cp of complete digraphs, regardless of the num-

ber of oriented lines or symmetric pairs, is

cP = cp(l, 1).

For example, Figure 4 shows that c3 = 7.

Using the formula (2), we obtain the following expression for cp.

Cp =      -   2—i  ^       ;

where

e(a) = t, \\k-^-]jk(a) + k (Jk(f)\  +     Z     d(r, s)jr(fi)j.(a).
k=l   vL       2       J \     L     /) lgr<sip

The first five values of cp are:

p       12    3    4    5

cp       1    2    7    42 582
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