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1. Introduction. We consider the normal form of the nonlinear

partial differential equation of hyperbolic type in two independent

variables:

(1.1) uxy = fix, y, u, ux, uy).

It is well known that, if in addition to usual smoothness condi-

tions, the functions / and the prescribed data Uoix) are periodic in x

with the same period T, then there exists a solution w(x, y) of (1.1)

satisfying m(x, 0)=u0ix), w(0, y) = i>o(y)+«o(0), where i/0(0)=0 for

xEi~ 00.00) and yE[—a, a]. However, this solution is periodic

only on the x-axis, but not necessarily in the strip x£( — °°,co),

yE [—a, a]. Cesari in [l] has raised the question whether it is possi-

ble to choose Voiy) in such a way that w(x, y) is periodic in x for all

yE[ — a, a]. Thus, we observe that the periodicity requirement

uix+T, y) =m(x, y) leads to the integral equation:

™(y) =  j   fix, y, u, ux, uv)dx = 0
J o

in the unknown v0iy), where u is thought to depend on z/0(y) only.

In this connection in [l] Cesari has considered the following prob-

lem:

1   fT
fl.2) uxy = f(x, y, u, ux, uy)- I   f(x, y, u, ux, uy)dx,

T J o

u(x + T,y) = u(x, y), u(x, 0) = Uo(x),

u(0, y) = uo(0) + v0(y),       v0(0) = 0,

for xE(~ °°i °°) and yE[ — a, a], where u0, v0 are prescribed func-

tions and a is a real constant. The function / in addition to being

bounded, continuous in all arguments and periodic in x with period

T, satisfies a Lipschitz condition in the last two arguments, i.e.

(1.4)    | f(x, y, u, p, q) - f(x, y,u,p,q)\   £ M\ p - p\   + b \ q - q | .

It is shown that if w0(x) and Voiy)EC and if
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(1.5) 2bT < 1,        Ma < I,

then there exists a solution of (1.2) satisfying (1.3). It is also proved

in [l] that if/ satisfies a Lipschitz condition in the last 3 variables

then the solution is unique and depends continuously on the initial

data.

Cesari [3] has more recently considered the problem

1   rT
uxy = f(x, y, u, ux, uy)- I    f(x, y, u, ux, uy)dx

T J o

1   rT
/4 „ - — I    f(x, y, «. u*> uv)dy
(1.6) I J o

l  rT rT
+ — I      I   f(x, y, «, ux, uy)dxdy,

1'Jo   Jo

«(* + T, y) = u(x, y),        u(x, y + T) = u(x, y),

u(x, 0) = u0(x),        u(0, y) = m0(0) + v0(y),        v0(0) = 0.

Under assumptions similar to those stated above, existence, unique-

ness, and continuous dependence on initial data for the solution of

(1.6), (1.7) are shown. The problem of existence of a periodic solution

of (1.1) in the strip x£(— oo, <x>), yE [ — a, a], now leads to the ques-

tion whether one can determine v0(y) in such a way that m(y) =0. A

similar but more difficult question arises in the case where the peri-

odic solutions of (1.1) are sought in the entire plane. In [2], and [3]

these questions are discussed at length.

In the present paper we shall be concerned with the existence of a

solution (not necessarily unique) to problem (1.2), (1.3) and (1.6),

(1.7). The question of uniqueness, continuous dependence on initial

data, will be dealt with in a separate note.

In §2, we give two existence theorems, Theorems 2.1 and 2.2,

where the condition (1.4) is replaced by a more general condition, i.e.

(1.8)    | f(x, y, u, p, q) - f(x, y,u,p,q)\  g on( \ p - p \ ) + w2( \ q - q | )

(for the smoothness assumptions concerning the functions Wi(t),

i = l, 2, see the statements of Theorems 2.1, 2.2 below). We note that

if o)i(t), i = l, 2, are linear, then (1.8) reduces to (1.4). Thus (1.8) con-

tains the Lipschitz condition as a special case (see Corollaries 2.1,

2.2 below). It also appears that the introduction of condition (1.8)

simplifies the proofs and makes the results more explicit.

2. Existence of a solution. In this section we shall give sufficient

conditions for the existence of a solution for the following problems:
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1 rT
(2.2) uxvix, y) = fix, y, u, ux, «„) - — I   fix, y, u, ux, uv)dx,

1 J o

w(x + T,y) = «(*, y), w(x, 0) = tf>i(x),

uiO, y) = ^i(y), 0i(O) = *,(0),

and

1   fr
Uxvix, y) = fix, y, u, ux, Uy) - — |   /(*, y, «, «„, m„)dx

I J o

1     fT
(2.4) - — I   fix, y, u, ux, uv)dy

I J o

l  /*r rT
+ — I      I    /O, y, u, ux, uv)dxdy,

T'Jo   J o

«(* + F, y + F) = w(x, y),        «(x, 0) = 02(x),

«(0, y) = *,(y), *2(0) = *2(0),

We first consider the problems (2.2), (2.3) and (2.4), (2.5) for x, yERi

= [0, T]x[-a, a] and R2= [0, T]X [0, T], where a and 7>0 are

given constants. Once the existence of solutions of the above prob-

lems are established in Ri and R2, then by the use of periodicity of /,

we extend these solutions for x£(— °o, oo) and y£(— oo, oo).

We observe that if m(x, y) and vix, y) are solutions of (2.2), (2.3)

and (2.4), (2.5) respectively and s(x, y)—uXy, rix, y)—vxy, then

sECiR/) and r£C(i?2), where C(i?i) and CiR2) denote the space of

continuous functions on Ri and R2 respectively. It is easily verified

that the functions s(x, y) and r(x, y) satisfy the functional equations

(2.6) six, y) = Fix, y, Bis, B2s, B3s),

(2.7) rix, y) = Gix, y, Bxr, B2r, B3r),

where for any OECiR/) or 0£C(i?2)

Bidix, y)=  f    f \it, v)dltdr, + uix, 0) + w(0, y) - «(0, 0),

(2.8) B28ix, y) =  f 0(x, v)dv + «,(*, 0),

B38ix,y) =  f'eii,y)di + uyi0,y),
J o

and
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l  rT
(2.9) F(x, y, u, p, q) = f(x, y, u, p, q) - — I    f(x, y, u, p, q)dx,

1 J o

i rT
G(x, y, u, p, q) = f(x, y, u, p, q) - — I    f(x, y, u, p, q)dx

1 J o

i rT
(2.10) - — I    f(x,y,u,p,q)dy

1 » o

l  rr rT
+ —J     J    f(x,y,u,p,q)dxdy.

Conversely if sEC(Ri) and rEC(R2) satisfy (2.6) and (2.7) and

u(x, 0), m(0, y)EC are prescribed, then the functions

u(x, y) = (Bis)(x, y),        v(x, y) = (Bir)(x, y)

are solutions of (2.2), (2.3) and (2.4), (2.5) respectively. Hence to show

the existence of solutions of our problems it is sufficient to prove that

the operators Ji and J2 defined by

(2.11) (Jis)(x, y) = F(x, y, Bis, B2s, B3s),

(2.12) (Jir)(x, y) = G(x, y, Bxr, B2r, Bsr),

have fixed points in C(Ri) and C(R2) respectively. To this end we

assume that the following hypotheses hold

Hi:/(x, y, u, p, q) is continuous for x£( — oo , oo), yE [—a, a] and

(u, p, q)E(— °°, °°) and periodic in x with period T; f is uniformly

bounded (|/| ^Z-i) and satisfies the condition

I f(x, y, u, p, q) - f(x, y, u, p, q) \
(2.13) iii,

■^ wi(\ p — p\   + w2( I q — q | ),

where ut(t) for i = l, 2 are subadditive, nondecreasing, nonnegative,

continuous for tE [0, °°), and vanishing only for t = 0.

H2: The functions 0i(x), \pi(y) are of class C for x£(— oo, oo) and

yE[ — a, a] respectively, 0i(x) is periodic with period T and 0i(O)

=U0).
Hi :/(x, y, u, p, q) is continuous for (x, y, u, p, q) E(— °°, °°) and

periodic in x and in y with period T./is uniformly bounded (|/| ^L2)

and satisfies (2.13).

H2' : 4>2(x), 02(y) are periodic in x and in y respectively and of class

C for x, yE(- oo, oo), with 02(O) =i//2(0).

Let
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Ni =   max  { | *!(*) I , I ̂ i(y) | , | */(*) | , | +l(y) \ },

N2 =   max  { | tf>2(x) | , | f ,(y) | , | <t>{ (x) | , | M iy)\},
x,trc£i

(2.14) . ,
Ki = max{ aTMi + 3Nh TMX + Nu aMi + Ni],     Mi ^ 2LU

K2 = max{ T2M 2 + 3N2, TM, + N2, TM2 + N2},     M2 ^ 4L2)

where Mi is defined by (2.19) below, and M2 is similarly defined.

From the continuity of the functions /(x, y, u, p, q), <£i(x), rf/iiy),

cb'ix) and \j/'(y) Ior x, y&Ri and u, p, qE [ — Ki, K-i], it follows that

they possess a common modulus of continuity i.e. there exists a func-

tion Q(5) such that

( I /(*, y, u, p, q) - fix, y, ii,p,q)\, \ 4>iix) - <r>i(x) \ ,
(2.15)

I <t>{ (x) - a (*) |, | ̂ (y) - Uy) I, ki' 60 - *i (y) I} ̂  "(5),

whenever |x —x| +|y —j>| + |m — w| + |i> — p~\ +\q_ — g\ ^5 for (x, y),

(*> y)ER\, u, p, q, u, p~, qE[— Ki, Ki], and 0(5) is nondecreasing,

nonnegative, continuous and vanishing for 5=0.

Let

fii(S) = fi([l + Mia]d + $2(8)) + wi(0(«)) + w2(Afi«),

0,(8) = 2{ 0([1 + MiF]S + 0(8)) + »x(Jfi8) + «,(0(8))},

xi(S) = 2{x([l + M2T]b + x(8)) + «i(t(8)) + co2(ikf2S)},

x2(S) = 2{x([l + M,T]S + x(S)) + <*i(M2o) + co2(x(8))},

where x(5) is the common modulus of continuity oi fix, y, u, p, q),

4>iix), <f>2 (x), ^s(y), iii (y) for x, y£.R2, u, p, qE [— K2, K2].

Now we state our main results:

Theorem 2.1. If
(1) the hypotheses Hi and H2 hold,

(2) 2/se solutions piit, 5) and p2it, 5) of the equations

Piit, 8) = 0i(8) + coi ( J pi(r, S)dr\ , t ^ 0,

(2.17) p2it, 8) = Q,(8) + co2 (   f p2(r, S)dr\

+ ~TJ       A J    P2(T' *)rfT)*'        *E ^' ^

are such that



562 A. K. AZIZ [June

lim pi(t, h) = 0,       i = 1, 2,        uniformly in t,

then

(3) there exists a solution u(x, y) of (2.2), (2.3) in the strip \x\ < oo,

\y\^a.

Theorem 2.2. If
(1) the hypotheses Hf" and H2 hold

(2) the solutions pi(t, o) and p2(t, d) of the equations

pi(t, o) = iri(5) + «, ( J    pi(r, S)drj

+ ^ I    Wl (   f ~Pl(-T> s)dT)dt>
(2.i8) T °   v;       '

h(t, 8) = ir2(5) + «2 (   I   P2(t, h)dr 1

+~t Lu* (/„ h(-T' 5)dT)dt' i e ^ ^'

are such that

lim pi(t, 8) = 0,        i = 1, 2,        uniformly in t,
s->o

then

(3) there exists a solution u(x, y) of (2.4), (2.5) in the entire plane

\x\ < oo,  |y| < oo.

Proof of Theorem 2.1. To prove our theorem we show that the

operator Ji defined by (2.11) has a fixed point in C(Ri). We note

since/ is bounded there exists a constant Mi such that ||5|| ^Afi im-

plies \\Jis\\ ^Mi for 5GC(Fi).
Now let

5= {5GC(Ui):|M| ^Mh | s(x, y) - s(x, y) \  g Pl(y, \x-x\)

(2.19) + P2(x, | y - y \ ), \x-x\  + \y-y\   ^5,

(x, y), (x, y) E Ri, o > 0, Mi ^ 2Li},

where the functions p, are solutions of (2.17). It follows easily from

the definition of S, the properties of pi and Arzela's theorem that 5

is closed, convex and compact. Next we show that JiSES. The

boundedness of/implies ||-/is|| ^ Mi. Moreover from the definition of

Ji it follows that
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I (Ji)(x, y) - (Jis)(x, y) |

^ Q( | x - x |   +  | (Bis)(x, y) - (Bis)(x, y) \ )
(2.20) i i

A-coi(\(B2s)(x,y)-(B2s)(x,y)\)

+ «2(| (B*s)(x,y) - (B»s)(x,y)\).

We note that

I Bis(x, y) — Bis(x, y) |   ^ Mia \x — x |  + fi( | x — x | ),

I B2s(x, y) - B2s(x, y) |   ^  I     | s(x, 17) - s(x, 17) | dr, + fi( | x - x \ ),
J o

I Bis(x, y) — B3s(x, y)\   g Mi | x — x | .

Therefore

I -M*, y) - ^i*(*. y) I

(2.21) ^ Oi(| *-*|)+«iM    Pi(«?, I * - * I )*» j

= pi(y, | x- x|).

Similarly we have

I Jis(x, y) - Jis(x, y) |

.       .       ^ 0«( | y - y | ) + co2 M   p2($,  | y - y | )d{\

+ —J    W2(J   P*(^>  I y - y| )^J^« = P2(x, | y - y\ ).

From (2.21) and (2.22) it follows that

I Jis(x, y) - Jis(x, y) |   ^ Pl(y, | x - x | ) + p2(x, \y - y\).

Hence JiSES.
It is easily seen that Ji is continuous on S. Therefore by Schauder's

Theorem [S], there exists an s0ES such that Ji5o = 50, which in turn

implies the existence of a solution u(x, y) of (2.2), (2.3) in Fi. By

extending both u(x, y) and f(x, y, u, p, q) for |x| <oo, |y| ^o,

| u\, \p\, \q\ ^Ki, by means of periodicity of/of period T in x (2.2),

(2.3) is satisfied in the strip |x| < oo, |y| ga.

Proof of Theorem (2.2) is precisely the same as the proof of

Theorem 2.1 except that the operator Ji is replaced by the operator

J2 defined by (2.12) and in the definition (2.19) of the set S, pi are

replaced by pi.
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Now we state two corollaries of the above theorems which contain

Theorem I of [l] and Theorem I of [3].

Corollary 2.1. If
(1) hypotheses (1) of Theorem 2.1 hold,

(2) coiit)=Mt, o)2(0 =bt, M,b>0,
(3) ebT<2bT+l,

then

(4) there exists a solution w(x, y) of (2.2), (2.3) in the strip \x\ < °°,

Corollary 2.2. If

(1) hypotheses (1) of Theorem 2.2 AoW,

(2) 0)1 (0 =&i*, o)2(0 = &2«, 6l, &2>0,

(3) e6ir<2&ir+l,^r<2&2r+l,

then

(4) J/jere exisfo a solution u{x, y) of (2.4), (2.5) in the entire plane

\x\ < oo, |y| < oo.

We give only the proof of Corollary 2.1. The proof of Corollary 2.2

is similar.

Proof of Corollary 2.1. To prove this corollary we need only

show that (2) and (3) imply (2.17) of Theorem 2.1. It follows im-

mediately from hypotheses (2) that (2.17) is equivalent to the fol-

lowing differential equations:

(2.23) r{ it, 8) = fii(8) + Mnit, 8),        ri(0, 8) = 0,

b  rT
(2.24) ri it, 8) = $22(S) + br^t, 8) + — I    r2ir, 8)dr,       r2(0, 8) = 0,

T J o

where

nit, 8)  =   j   Pi(t, 8)dr, nit, 5) =   [ pi(r, o)dr.

We have at once

$2i(S)
riih S) = —Y- ieM< -1),       t* 0.

M

The continuity of $2i(5) together with fli(0)=0 imply that

lima^o riit, 5)=0, and nonnegativity of pi(r, 5) implies that

lim^o piit, 5) =0. Similarly (2.24) has the solution

/$22(8)        1   rT  \ i
(2.25) nit, 5) = (-^- + — J    r2\, it, o)dtie»< -I),        IE [0, T],
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provided

rT              Y2bT + 1 - ebTA       fi2(5).
(2.26)     J    r2(t,S)dty-—-J = _A-'[ew - 6T - 1].

Since (2.26) must hold for all 5^0, and since r2(t, 5) is nonnegative,

(2.26) is satisfied if

(2.27) ebT < 2bT + 1.

Now from (2.25) and (2.26) we have

(2.28) r2(t,d) = -^-C(e"-l),
b

where

ebT - hT- I
C =-+ 1.

-ebT + 2bT + 1

Equation (2.28), together with continuity of fi2(5) for 5^0, U2(0) =0

and nonnegativity of p2(t, 5) imply lim^o p2(t, o) =0. Thus if (2.27)

holds all the hypotheses of Theorem 2.1 are satisfied and the assertion

of Corollary 2.1 follows from Theorem 2.1.

3. Concluding remarks. We note that the hypotheses (3) of

Corollaries 2.1 and 2.2 are satisfied for 26F<2.5, 2&iF<2.5, f = 1,2.

The restriction Ma<l in Theorem I of [l] is not required in Corol-

lary 2.1 and the restrictions 2bT<l can be replaced by 2&F<2.50.

Similarly the restrictions 2biT<l, i = 1, 2 of Theorem 1 of [3] can be

replaced by 2^<2.50, t' = l, 2.

We also observe that if the function / in Corollaries 2.1, 2.2 satis-

fies a Lipschitz condition in the last three arguments u, p, q, i.e.

|/(x, y, u, p, q)—f(x, y, u, p, q)\ ^b0\ u — u\ A-bi\ p — p\ +&2| q — q\,
then the existence of the unique solutions of problems (2.2), (2.3)

and (2.4), (2.5) follow immediately from Banach's contraction prin-

ciple applied to the operators Ji and J2, provided we impose the

restrictions:

2(b0aT + bia + b2T) < 1,       in Corollary 2.1,

and

4T(b0T + biAr b0) < 1,       in Corollary 2.2.
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