A NEW GENERAL SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS

C. RAMANUJACHARYULU

0 . Summary. Let v be any integer with s_{1} the least prime power factor, the other prime power factors being s_{2}, \cdots, s_{m}. Assume v is odd and consider the cartesian product of the m Galois fields $\mathrm{GF}\left(s_{1}\right), \cdots, \mathrm{GF}\left(s_{m}\right)$ of orders s_{1}, \cdots, s_{m} respectively. Let x_{i} denote the primitive root of $\mathrm{GF}\left(s_{i}\right), i=1,2, \cdots, m$. Then labelling the points

$$
\alpha_{j+1}=\left(x_{1}^{j}, x_{2}^{j}, \cdots, x_{m}^{j}\right), \quad j=0,1, \cdots, s_{1}-2
$$

and arbitrarily labelling the remaining points α of the product space, defining addition and multiplication of α 's coordinate-wise in their respective fields, we take the initial blocks.

$$
\begin{aligned}
& \left(0, \beta_{1} \alpha_{1}, \beta_{1} \alpha_{2}, \cdots, \beta_{1} \alpha_{k-1}\right) \\
& \left(0, \beta_{2} \alpha_{1}, \beta_{2} \alpha_{2}, \cdots, \beta_{2} \alpha_{k-1}\right) \\
& \quad \vdots \\
& \left(0, \beta_{(v-1) / 2} \alpha_{1}, \beta_{(v-1) / 2} \alpha_{2}, \cdots, \beta_{(v-1) / 2} \alpha_{k-1}\right)
\end{aligned}
$$

where $k \leqq s_{1}$ if $m>1$ and $k<s_{1}$ if $m=1 ; 0=(0,0, \cdots, 0)$ and β_{j} 's are such that no two β_{j} 's add up to 0 ($=$ the null vector): The theorem proved here is that by adding each of the points $\beta_{j}, j=0,1, \cdots, v-1$ of the product space to each of the above initial blocks we get a Balanced Incomplete Block Design with the parameters

$$
\left(v, \frac{v \cdot v-1}{2} \cdot \frac{k \cdot v-1}{2} \cdot k, \frac{k \cdot k-1}{2}\right)
$$

which is a new series generalising the series given by B. J. Gassner (Equal difference BIB designs, Proc. Amer. Math. Soc. 16 (1965), 378-380).

1. Introduction. Let G be an abelian group of order v. A set of k distinct elements of G is called a difference set if the $k \cdot k-1$ differences of the elements of D contain every nonzero element of G, λ times. These definitions are generalised and in place of a single set D, one can take t initial blocks of k elements each where the $t \cdot k \cdot k-1$ differences from the t blocks contain every nonzero element of G the same number of times.
[^0]Let $\mathrm{GF}\left(s_{i}\right)$ denote a Galois field of order $s_{i}, i=1,2, \cdots, m$ and x_{i} be a primitive root in the field. Let v be an odd integer with the following prime power decomposition:

$$
v=p_{1}^{\epsilon_{1}} \cdots p_{m}^{\epsilon_{m}}=s_{1} \cdot s_{2} \cdots s_{m}
$$

where $s_{i}=p_{i}^{e} ; i=1,2, \cdots, m$.
Assume that s_{1} is the least prime power factor of v and let β denote a general element of the cartesian product G of the m fields

$$
G=\operatorname{GF}\left(s_{1}\right) * \cdots * \operatorname{GF}\left(s_{m}\right)
$$

Let us label some of the β 's by α 's as follows:

$$
\begin{aligned}
\alpha_{j+1} & =\left(x_{1}^{j}, x_{2}^{j}, \cdots, x_{m}^{j}\right), \quad j=0,1, \cdots, s_{1}-2, \\
\alpha_{0} & =(0,0, \cdots, 0) .
\end{aligned}
$$

Let B denote the set of points:

$$
B:\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k-1}\right)
$$

where $k \leqq s_{1}$ if $m>1$ and $k<s_{1}$ if $m=1$.
2. Some lemmas on B.
2.1. Lemma. Let α_{c} and α_{d} be any two distinct elements of B. Then α_{c} and $\alpha_{c}-\alpha_{d}$ have multiplicative inverses defined.

Proof follows easily since no coordinate of either α_{c} or $\alpha_{c}-\alpha_{d}$ is zero and hence a multiplicative inverse exists for each coordinate in their respective fields.
2.2. Lemma. If $\alpha_{c} \in B, c \neq 0,1$ and $m>1$, then $\alpha_{c}^{-1} \in B$.

For, otherwise if a d exists such that

$$
\alpha_{c} \alpha_{d}=\alpha_{c+d}=\alpha_{0}
$$

then

$$
\begin{equation*}
c+d=0 \bmod \left\{\left(s_{1}-1\right),\left(s_{2}-1\right),\left(s_{3}-1\right) \cdots,\left(s_{m}-1\right)\right\} \cdots \tag{2.2}
\end{equation*}
$$

since $c, d \leqq k_{1}-1 \leqq s_{1}-1$ and $c \neq d$, and the fields are all odd; $c+d$ can take at most the value $2\left(s_{1}-1\right)-1$. Thus if $c+d=s_{1}-1$ then $c+d$ $\neq 0 \bmod \left(s_{i}-1\right) i=2, \cdots, m$. Hence in no case can (2.2) be satisfied.
2.3. Proposition. A set T of $(v-1) / 2$ points $\beta_{j}, j=1,2, \cdots$, $(v-1) / 2$ can be selected from the product space G such that if $\beta_{j} \in T$, $-\beta_{j} \in T$.
3. Theorem. From the initial blocks

$$
\begin{aligned}
& B_{1}:\left(0, \beta_{1} \alpha_{1}, \beta_{1} \alpha_{2}, \cdots, \beta_{1} \alpha_{k-1}\right) \\
& B_{2}:\left(0, \beta_{2} \alpha_{1}, \beta_{2} \alpha_{2}, \cdots, \beta_{2} \alpha_{k-1}\right) \\
& \vdots \\
& \dot{B}_{(v-1) / 2}:\left(0, \beta_{(v-1) / 2} \alpha_{1}, \beta_{(v-1) / 2} \alpha_{2}, \cdots, \beta_{(v-1) / 2} \alpha_{k-1}\right)
\end{aligned}
$$

on adding $\beta_{j}, i=0,1,2, \cdots, v-1$ to each element of each block a balanced incomplete block design with the following parameters results in:

$$
\begin{aligned}
& v=v, \\
& b=v \cdot \frac{v-1}{2} \\
& r=k \cdot \frac{v-1}{2}, \\
& k=k, \\
& \lambda=k \cdot \frac{k-1}{2} .
\end{aligned}
$$

Proof. $\left\{\beta_{j}\right\}, j=0,1,2, \cdots, v-1$ are the v elements of G : the product space of the m fields taken as treatments. First we establish that each initial block contains distinct elements then every two initial blocks are distinct if $m>1$ and finally that every treatment appears r times and every pair of treatments appears λ times.

If B_{j} had contained two identical points then we should have:

$$
\beta_{j} \alpha_{c}=\beta_{j} \alpha_{d}, \quad c \neq d \in\{1, \cdots, k-1\}
$$

i.e.

$$
\beta_{j}\left(\alpha_{t}-\alpha_{d}\right)=0 .
$$

Multiplying by $\left(\alpha_{c}-\alpha_{d}\right)^{-1}$ we should have $\beta_{j}=0$ which is not true. Hence B_{j} contains distinct elements.

Consider

$$
B_{\boldsymbol{j}}=\left(0, \beta_{j} \alpha_{1}, \cdots, \beta_{j} \alpha_{k-1}\right)
$$

and

$$
B_{i}=\left(0, \beta_{i} \alpha_{1}, \cdots, \beta_{i} \alpha_{k-1}\right)
$$

If $\beta_{j} \alpha_{\boldsymbol{i}} \notin B_{\boldsymbol{i}}$ then B_{j} and $B_{\boldsymbol{i}}$ are distinct blocks. If $\beta_{j} \alpha_{1} \in B_{\boldsymbol{i}}$ then we
show that $\beta_{i} \alpha_{1} \notin B_{j}$. Deny this and let $\beta_{j} \alpha_{1}=\beta_{i} \alpha_{c}, 1 \leqq c \leqq k-1$. Then $\beta_{i} \alpha_{1}=\beta_{j} \alpha_{c}^{-1} \alpha_{1}^{2}=\beta_{j} \alpha_{c}^{-1}\left(\alpha_{1}^{2}=\alpha_{1}\right.$ for $\alpha_{1}=\alpha_{1}^{2}=(1,1, \cdots, 1)$. But $\alpha_{c}^{-1} \in B$ and hence $\beta_{i} \alpha_{1} \notin B_{j}$.

Thus the b blocks are distinct, we will show that each treatment appears r times. Let β be any point in G. Consider the v blocks generated by B_{j} for some fixed $j, j=1,2, \cdots,(v-1) / 2$. Let

$$
\beta-\beta_{j} \alpha_{c}=\beta_{c} \quad \text { for } c=0,1, \cdots, k-1
$$

then β appears in the k blocks $\left\{B_{j}+\beta_{c}\right\}, c=0,1, \cdots, k-1$. Hence as $j=1,2, \cdots,(v-1) / 2$ we observe that every treatment appears in $r=k-(v-1) / 2$ blocks.

Now we proceed to determine λ. Consider any two points $\beta_{1} \alpha_{c}$ $\neq \alpha_{d} \beta_{1} \in B_{1}$. Let $\beta_{1}\left(\alpha_{c}-\alpha_{d}\right)=\beta_{1} \alpha$. Then in the initial blocks B_{j} the corresponding difference is $\beta_{j} \alpha$. The differences $\left\{\beta_{j} \alpha,-\beta_{j} \alpha\right\} j=1,2$, $\cdots,(v-1) / 2$ are all distinct. For if $\beta_{j} \alpha=\beta_{j^{\prime}} \alpha$ then multiplying by α^{-1} we should have $j=j^{\prime}$ or if $\beta_{j} \alpha=-\beta_{j^{\prime}} \alpha$ then again $\left(\beta_{j}+\beta_{j^{\prime}}\right)=0$ which is not true by choice. Thus in the initial block the differences between c and d elements produce all the nonzero elements of G exactly once. Given two points β_{i} and β_{j} let $\beta_{i}-\beta_{j}=\beta$ say. In the initial block choose any two distinct points α_{c} and α_{d} then there exists a unique $\beta_{l}, l=1,2, \cdots,(v-1) / 2$ such that

$$
\beta_{l} \alpha_{c}-\beta_{l} \alpha_{d}=\beta,
$$

since $\pm\left(\alpha_{c}-\alpha_{d}\right) \beta_{t}, t=1,2, \cdots,(v-1) / 2$ gives all nonzero β^{\prime} s exactly once. In the set of v blocks generated by B_{l} then, β_{i} and β_{j} occur together in exactly one block. Since we have $C_{k, 2}$ pairs of (α_{c}, α_{d}) every pair of treatments appears in $k \cdot k-1 / 2$ blocks.

An example of $v=9, b=36, r=16, k=4, \lambda=6$, constructed using the 4 initial blocks

$$
\begin{gathered}
(0,1,-1, x) ;(0, x,-x,-1) ;(0, x+1,-x-1, x-1) ; \\
(0, x-1,-x+1,-x-1) ;
\end{gathered}
$$

in the field $\mathrm{GF}\left(3^{2}\right)$ with the irreducible function $x^{2}+1=0$:

References

1. R. C. Bose, On the construction of balanced "Incomplete block designs," Ann. Eugenics, 9 (1939), 358-399.
2. L. E. Dickson, Linear groups with an exposition of Galois Field Theory, Dover, New York, 1958.
3. B. J. Gassner, Equal difference BIB designs, Proc. Amer. Math. Soc. 16 (1965), 378-380.

Indian Statistical Institute, Calcutta

[^0]: Received by the editors December 24, 1965.

