A NEW GENERAL SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS

C. RAMANUJACHARYULU

0. Summary. Let v be any integer with s_1 the least prime power factor, the other prime power factors being s_2, \dots, s_m . Assume v is odd and consider the cartesian product of the m Galois fields $GF(s_1), \dots, GF(s_m)$ of orders s_1, \dots, s_m respectively. Let x_i denote the primitive root of $GF(s_i)$, $i=1, 2, \dots, m$. Then labelling the points

$$\alpha_{j+1} = (x_1^j, x_2^j, \cdots, x_m^j), \qquad j = 0, 1, \cdots, s_1 - 2;$$

and arbitrarily labelling the remaining points α of the product space, defining addition and multiplication of α 's coordinate-wise in their respective fields, we take the initial blocks.

$$\begin{array}{c} (0, \ \beta_{1}\alpha_{1}, \ \beta_{1}\alpha_{2}, \ \cdots, \ \beta_{1}\alpha_{k-1}) \\ (0, \ \beta_{2}\alpha_{1}, \ \beta_{2}\alpha_{2}, \ \cdots, \ \beta_{2}\alpha_{k-1}) \\ \vdots \\ (0, \ \beta_{(v-1)/2}\alpha_{1}, \ \beta_{(v-1)/2}\alpha_{2}, \ \cdots, \ \beta_{(v-1)/2}\alpha_{k-1}) \end{array}$$

where $k \leq s_1$ if m > 1 and $k < s_1$ if m = 1; $0 = (0, 0, \dots, 0)$ and β_j 's are such that no two β_j 's add up to 0 (= the null vector): The theorem proved here is that by adding each of the points β_j , $j = 0, 1, \dots, v-1$ of the product space to each of the above initial blocks we get a Balanced Incomplete Block Design with the parameters

$$\left(v, \frac{v \cdot v - 1}{2} \cdot \frac{k \cdot v - 1}{2} \cdot k, \frac{k \cdot k - 1}{2}\right)$$

which is a new series generalising the series given by B. J. Gassner (*Equal difference BIB designs*, Proc. Amer. Math. Soc. 16 (1965), 378-380).

1. Introduction. Let G be an abelian group of order v. A set of k distinct elements of G is called a difference set if the $k \cdot k - 1$ differences of the elements of D contain every nonzero element of G, λ times. These definitions are generalised and in place of a single set D, one can take t initial blocks of k elements each where the $t \cdot k \cdot k - 1$ differences from the t blocks contain every nonzero element of G the same number of times.

Received by the editors December 24, 1965.

Let $GF(s_i)$ denote a Galois field of order s_i , $i=1, 2, \cdots, m$ and x_i be a primitive root in the field. Let v be an odd integer with the following prime power decomposition:

$$v = p_1^{e_1} \cdots p_m^{e_m} = s_1 \cdot s_2 \cdots s_m$$

where $s_i = p_i^{e_i}$; $i = 1, 2, \dots, m$.

Assume that s_1 is the least prime power factor of v and let β denote a general element of the cartesian product G of the *m* fields

 $G = GF(s_1) * \cdots * GF(s_m).$

Let us label some of the β 's by α 's as follows:

$$\begin{aligned} \alpha_{j+1} &= (x_1^j, x_2^j, \cdots, x_m^j), \qquad j = 0, 1, \cdots, s_1 - 2, \\ \alpha_0 &= (0, 0, \cdots, 0). \end{aligned}$$

Let B denote the set of points:

$$B: (\alpha_0, \alpha_1, \cdots, \alpha_{k-1})$$

where $k \leq s_1$ if m > 1 and $k < s_1$ if m = 1.

2. Some lemmas on B.

2.1. LEMMA. Let α_c and α_d be any two distinct elements of B. Then α_c and $\alpha_e - \alpha_d$ have multiplicative inverses defined.

Proof follows easily since no coordinate of either α_c or $\alpha_c - \alpha_d$ is zero and hence a multiplicative inverse exists for each coordinate in their respective fields.

2.2. LEMMA. If $\alpha_c \in B$, $c \neq 0$, 1 and m > 1, then $\alpha_c^{-1} \in B$.

For, otherwise if a d exists such that

$$\alpha_c \alpha_d = \alpha_{c+d} = \alpha_0$$

then

$$(2.2) \quad c+d=0 \mod \{(s_1-1), (s_2-1), (s_3-1), \dots, (s_m-1)\} \cdots$$

since c, $d \leq k_1 - 1 \leq s_1 - 1$ and $c \neq d$, and the fields are all odd; c+d can take at most the value $2(s_1-1)-1$. Thus if $c+d=s_1-1$ then $c+d \neq 0 \mod (s_i-1) i=2, \cdots, m$. Hence in no case can (2.2) be satisfied.

2.3. PROPOSITION. A set T of (v-1)/2 points β_j , $j=1, 2, \cdots$, (v-1)/2 can be selected from the product space G such that if $\beta_j \in T$, $-\beta_j \in T$.

3. THEOREM. From the initial blocks

$$B_1: (0, \beta_1\alpha_1, \beta_1\alpha_2, \cdots, \beta_1\alpha_{k-1})$$

$$B_2: (0, \beta_2\alpha_1, \beta_2\alpha_2, \cdots, \beta_2\alpha_{k-1})$$

$$\vdots$$

$$B_{(v-1)/2}: (0, \beta_{(v-1)/2}\alpha_1, \beta_{(v-1)/2}\alpha_2, \cdots, \beta_{(v-1)/2}\alpha_{k-1})$$

on adding β_i , $i=0, 1, 2, \dots, v-1$ to each element of each block a balanced incomplete block design with the following parameters results in:

$$v = v,$$

$$b = v \cdot \frac{v - 1}{2}$$

$$r = k \cdot \frac{v - 1}{2},$$

$$k = k,$$

$$\lambda = k \cdot \frac{k - 1}{2}.$$

PROOF. $\{\beta_j\}, j=0, 1, 2, \cdots, v-1$ are the v elements of G: the product space of the m fields taken as treatments. First we establish that each initial block contains distinct elements then every two initial blocks are distinct if m>1 and finally that every treatment appears r times and every pair of treatments appears λ times.

If B_j had contained two identical points then we should have:

$$\beta_{j}\alpha_{c}=\beta_{j}\alpha_{d}, \qquad c\neq d\in\{1,\cdots,k-1\},$$

i.e.

$$\beta_j(\alpha_c - \alpha_d) = 0.$$

Multiplying by $(\alpha_c - \alpha_d)^{-1}$ we should have $\beta_j = 0$ which is not true. Hence B_j contains distinct elements.

Consider

$$B_{j} = (0, \beta_{j}\alpha_{1}, \cdots, \beta_{j}\alpha_{k-1})$$

and

$$B_i = (0, \beta_i \alpha_1, \cdots, \beta_i \alpha_{k-1})$$

If $\beta_j \alpha_1 \in B_i$ then B_j and B_i are distinct blocks. If $\beta_j \alpha_1 \in B_i$ then we

show that $\beta_i \alpha_1 \notin B_j$. Deny this and let $\beta_j \alpha_1 = \beta_i \alpha_c$, $1 \leq c \leq k-1$. Then $\beta_i \alpha_1 = \beta_j \alpha_c^{-1} \alpha_1^2 = \beta_j \alpha_c^{-1}$ ($\alpha_1^2 = \alpha_1$ for $\alpha_1 = \alpha_1^2 = (1, 1, \dots, 1)$). But $\alpha_c^{-1} \notin B$ and hence $\beta_i \alpha_1 \notin B_j$.

Thus the *b* blocks are distinct, we will show that each treatment appears *r* times. Let β be any point in *G*. Consider the *v* blocks generated by B_j for some fixed $j, j=1, 2, \cdots, (v-1)/2$. Let

$$\beta - \beta_j \alpha_c = \beta_c$$
 for $c = 0, 1, \cdots, k-1$

then β appears in the k blocks $\{B_j+\beta_c\}$, $c=0, 1, \dots, k-1$. Hence as $j=1, 2, \dots, (v-1)/2$ we observe that every treatment appears in r=k-(v-1)/2 blocks.

Now we proceed to determine λ . Consider any two points $\beta_1 \alpha_c \neq \alpha_d \beta_1 \in B_1$. Let $\beta_1(\alpha_c - \alpha_d) = \beta_1 \alpha$. Then in the initial blocks B_j the corresponding difference is $\beta_j \alpha$. The differences $\{\beta_j \alpha, -\beta_j \alpha\} \ j=1, 2, \cdots, (v-1)/2$ are all distinct. For if $\beta_j \alpha = \beta_{j'} \alpha$ then multiplying by α^{-1} we should have j=j' or if $\beta_j \alpha = -\beta_{j'} \alpha$ then again $(\beta_j + \beta_{j'}) = 0$ which is not true by choice. Thus in the initial block the differences between c and d elements produce all the nonzero elements of G exactly once. Given two points β_i and β_j let $\beta_i - \beta_j = \beta$ say. In the initial block choose any two distinct points α_c and α_d then there exists a unique β_l , $l=1, 2, \cdots, (v-1)/2$ such that

$$\beta_l \alpha_c - \beta_l \alpha_d = \beta,$$

since $\pm (\alpha_c - \alpha_d)\beta_i$, $t=1, 2, \cdots, (v-1)/2$ gives all nonzero β 's exactly once. In the set of v blocks generated by B_i then, β_i and β_j occur together in exactly one block. Since we have $C_{k,2}$ pairs of (α_c, α_d) every pair of treatments appears in $k \cdot k - 1/2$ blocks.

An example of v = 9, b = 36, r = 16, k = 4, $\lambda = 6$, constructed using the 4 initial blocks

$$(0, 1, -1, x); (0, x, -x, -1); (0, x + 1, -x - 1, x - 1);$$

 $(0, x - 1, -x + 1, -x - 1);$

in the field GF(3²) with the irreducible function $x^2+1=0$:

References

1. R. C. Bose, On the construction of balanced "Incomplete block designs," Ann. Eugenics, 9 (1939), 358-399.

2. L. E. Dickson, Linear groups with an exposition of Galois Field Theory, Dover, New York, 1958.

3. B. J. Gassner, Equal difference BIB designs, Proc. Amer. Math. Soc. 16 (1965), 378-380.

INDIAN STATISTICAL INSTITUTE, CALCUTTA