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1. Introduction. The problem referred to in the title is the follow-

ing. If x is a semicharacter defined on a subsemigroup S of a com-

mutative semigroup T and if x never takes on the value zero, when

can x be extended to a semicharacter of T which never takes on the

value zero? The problem was considered in [l] and [2]. A sufficient

condition for the extension of x was given in [l], but there is an

abundance of examples that show that this condition is not always

necessary.

As in [l] and [2], we consider the condition:

(*)    (a,b,x)ESXSXT    and    ax = bx    imply    x(a) = x(P).

The function ax defined in [l] is also used. In the present paper, how-

ever, we shall have an occasion to embed T in a larger semigroup

U. Thus we adopt the more complete notation ax:

t J        0 if Ax(x) = 01
ax (x) = I r t I ,

[sup Ax (x)    if Ax (x) 9* 0]

where

Al(x) = { I x(a)/xib) I1'":

bx"yz = az with (a, b, y, z) G 5 X S X T X T}.

It is appropriate to consider another auxiliary function associated

with x- We define

fil(x) = inf{ \xia)/xib)\lln:

bxnz = ayz with (a, b, y, z) E S X S X T X PJ.

2. Preliminary results. An immediate consequence of the defini-

tion of the function ax is the following

Lemma 1. If x is a nonvanishing semicharacter defined on a subsemi-

group S of a commutative semigroup T, then the set

Ix = {xET: ax(x) = 0}

is either empty or an ideal of T.
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Certain properties of the function PTX which can be established by

straightforward computations are listed in the following lemma.

Lemma 2. Suppose that %is a nonvanishing semicharacter defined on

a subsemigroup S of a commutative semigroup T. If (c, x, y, z)ESXT

XT XT, then

(i) pTx(cx) = \X(c)\Pl(x),

(ii) pTx(xy)^pTx(x)PTx(y)^pTx(x),

(iii) pTx(x)=pTx(y) \ixz=yz.

In particular, 0^Px(x) ^ 1 for each xET.

Lemma 3. Suppose that x i$ a positive semicharacter defined on a

subsemigroup Sofa commutative semigroup T and suppose that Px(x) > 0

for each xET. Then Px(e) = 1 if T has an identity e. Moreover, if T is

without identity and if U=T" denotes T with an identity e adjoined,

thenPux(e) = l.

Proof. First, suppose that e is an identity for T. If a £5, then

Pl(a)=PTx(ae)=x(a)Px(e); hence Pl(e)?*0 since Pl(a)>0. Part (ii) of

Lemma 2 implies that Px(e) =0 or 1. Therefore, Px(e) =1.

Now suppose that T does not have an identity and let U denote T

with an identity e adjoined. If Px(e)<l, then for some positive

integer nwe have that benz = ayz where (a, b, y, z)ESXSXTXT and

x(b)>x(a). However, this implies that &",+1z2m = am+1(ym+12)2m for

any positive integer m and that Px(z)^(x(a)/x(b))m+l- Since

PTx(z) >0, it follows that Pl(e) = 1.

Lemma 4. Suppose that x is a positive semicharacter defined on a sub-

semigroup S of a commutative semigroup T with identity e. If Px(e)9*0,

then condition (*) is satisfied and ax(x) g 1 for each x in T.

Proof. Since Px(e)9*0, Px(e) = l. Suppose that a£5. Using (i) of

Lemma 2, we have that

0x («) = 0x (ae) = x(a)Px (e) = x(a)

since x is positive. Now suppose that ax = bx where (a,b,x)ESXSX T.

Then x(a) =PTx(a) =PTx(b) =x(b) and (*) is satisfied.

In order to prove that ax(x) ^1 for each xET, suppose that xET

and suppose that bxnyz = az where (a, b, y, z)ESXSXTXT. Then

x(b) ^ x(b)pl(xny) = pl(bxny) = px(a) = x(a),

which proves that ax(x) g 1.

Lemma 5. Suppose that x i>s a positive semicharacter defined on a
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subsemigroup S of a commutative semigroup T with identity e and sup-

pose that fix(e) 9*0. Let 0 be the natural map from T onto the maximal

cancellative homomorphic image of T. Then xp: 6(a)—>x(fl) is a, (well-

defined) positive character of 6(S) and filiT)(0(x)) =fix(x) for each xET.

Proof. Since 0 is the natural map from T onto the maximal can-

cellative homomorphic image of T, 6(a) =0(6) if and only if ax = bx.

Condition (*) holds by Lemma 4. Thus the mapping 0(a)—»x(g) is a

well-defined mapping on 0(5). The verification of the equation

$(r)(0(*)) =&$(*) is also direct.

3. Principal results.

Theorem. Suppose that x is a positive semicharacter defined on a

subsemigroup S of a commutative semigroup T. Then x can be extended

to a positive semicharacter of T if and only if there is a subsemigroup P

of SXT having the properties:

(a) if xET, there exists aES such that (a, x)EP',

(b) if (a, x)EP, then |x(o)| £/£(*).

Proof. Suppose that x can be extended to a positive semichar-

acter \p of T. Then

P= {(a, x)ESX T: x(a) ^ *(*)}

is a subsemigroup having the properties (a) and (b) provided that we

define i^(x) = l for all xET if x(x) = l for all xES. The main point

here is that ^(x) ^fix(x) for each xGP-

Conversely, assume that P is a subsemigroup of SXT having

the properties (a) and (b). Notice that these properties of P imply

that fix(x) >0 for each xET. If T does not have an identity element,

let Te denote T with an identity e adjoined. It follows from Lemma 3

that P'=PU{(s, e): (a, x)EP} is a subsemigroup of SXT" having

properties (a) and (b) where T is replaced by T". Thus we may as-

sume that T already has an identity e. By Lemma 5, we may assume

that T is cancellative. Let G be a commutative group containing T.

Since fix(e)9*0, Lemma 4 implies that condition (*) is satisfied and

that ax(x)^l for each xET. Ii Ix= {xET:ax(x)=0} is empty,

then we know that x can be extended to a positive semicharacter of T

according to the theorem in [l]. If Ix is not empty, we define

Q=\(a, x)GP:xG7^|. Now Q is a subsemigroup of P; indeed, Q

is an ideal of P since Ix is an ideal of T. Let ir be the natural homo-

morphism from Q into G, that is, w(a, x) =ax~x. Define U= { T, ir(Q)},

the subsemigroup of G generated by T and ir(Q). Suppose that
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benz = awz   where    (a, b, w, z) £ S X S X U X U   and

(C) ....
n is a positive integer.

Then b=aw since U is cancellative and e is an identity element of U.

Since wEU, one of the following equations holds where x(c) =@x(x)

and (c, x, y)ESXTXT:w = y, w = cx_1, or w — cx~xy. If w = y, then

x(b)^x(a) since Px(e) = l. If w = cx~1, then bx=ac, which implies

that* EIX; this leads to a contradiction since ac = awx = bx. Finally,

if w = cx~1y, then bx = acy and x(&)£x(#) =x(a)x(<0/3x0y)> so x(&)

^xC^i^Cy) =x(°)- We have shown that (C) implies that x(b) =x(a);

hence Px(e) = 1. It is easy to verify that T^ is empty. Therefore, x can

be extended to a positive semicharacter of U and consequently to

the subsemigroup T of U.

It is immediate that if the subsemigroup 5 of the commutative

semigroup T is a homomorphic retract of T, then any positive semi-

character defined on 5 can be extended to a positive semicharacter of

T. We now have a generalization of this.

Corollary 1. Suppose that x is a positive semicharacter defined on

a subsemigroup S of a commutative semigroup T. If there is a homomor-

phism it from T into S such that xt^/?£, then x can be extended to a

positive semicharacter of T.

Proof. Define P= {(tt(x), x): xET}. Then P is a subsemigroup

of SX T and P satisfies conditions (a) and (b) of Theorem 1.

Corollary 2. Suppose that x is a nonvanishing semicharacter de-

fined on a subsemigroup S of a commutative semigroup T. Then x can

be extended to a nonvanishing semicharacter of T if and only if condition

(*) holds and there is a subsemigroup P of SXT having properties (a)

and (b).

Proof. Observe that PX=P\X\ and apply Lemma 1 of [l].

4. The insufficiency of a positive /3. Suppose that x is a nonvanish-

ing semicharacter defined on a subsemigroup 5 of a commutative

semigroup T. The question whether the condition Px(x)>0 for each

xET is sufficient in order that x can be extended to a nonvanishing

semicharacter of T is natural to consider. A negative answer is given

below. It is convenient now to use the additive notation. In fact, we

exhibit a counterexample by using a semigroup T of the additive real

numbers.

Let L= {o,,y, xk} be a set of linearly independent real numbers

where t and j range over the positive integers and k over the non-
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negative integers. Let 5= {a,,j} be the subsemigroup of the additive

real numbers generated by the a<,,'s and let T= {L, (ixo+x,— a,-,,)}

be the subsemigroup of the additive reals generated by the set L and

the numbers of the form ix04-x,— aitj where i and j are positive inte-

gers.

Define a positive semicharacter x on 5 by: x(a*.i)= 1/2*'. We

show that fi^(x)>0 for each xET. First, suppose that x= ]Ct=o nkXk

where nk is a nonnegative integer for each k, that is, suppose that

xEX= {xo, Xi, x2, • • • }, the subsemigroup of T generated by the

Xk's. Suppose that a= 2~LPi~iaiJ and ^= 2~Lli,jai,i where 1 fZi, j^m

and pi,j and qt,j are nonnegative integers. If 64-nx = a+y where

yET, then it follows from the definition of T and the linear inde-

pendence of L that pi.j^qtj if j>r and that pt,j^qi,j+nn0/i if

j g r. Thus xia)/xib) ^ (l/2)TW>»r">i2 and, therefore, fix(x)

^ (l/2)r(r+1)no'2 since the latter number is independent of the choice

of a and b in 5. Now if t is an arbitrary element of T, there are ele-

ments c and d in 5 such that c+/ = x4-d where xEX. Hence

PxO) ̂  filic + t) = fix(x + d) = xid)Pxix) > 0.

If \p is an extension of x to a positive semicharacter of T and if

\p(xk)=hk, then

4>(ix0 4- xy — a(j) = h0hj2   = (2 A0)'Ay > 1

for appropriate i and j. Since x cannot be extended to a positive

semicharacter of T, x cannot be extended to a nonvanishing semi-

character of P.
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