A SOLUTION TO THE NONVANISHING SEMI-CHARACTER EXTENSION PROBLEM

PAUL HILL

1. Introduction. The problem referred to in the title is the following. If χ is a semicharacter defined on a subsemigroup S of a commutative semigroup T and if χ never takes on the value zero, when can χ be extended to a semicharacter of T which never takes on the value zero? The problem was considered in [1] and [2]. A sufficient condition for the extension of χ was given in [1], but there is an abundance of examples that show that this condition is not always necessary.

As in [1] and [2], we consider the condition:

(*)
$$(a, b, x) \in S \times S \times T$$
 and $ax = bx$ imply $\chi(a) = \chi(b)$.

The function α_{χ} defined in [1] is also used. In the present paper, however, we shall have an occasion to embed T in a larger semigroup U. Thus we adopt the more complete notation α_{χ}^{T} :

$$\alpha_{\mathbf{x}}^{T}(x) = \begin{cases} 0 & \text{if } A_{\mathbf{x}}^{T}(x) = \emptyset \\ \sup A_{\mathbf{x}}^{T}(x) & \text{if } A_{\mathbf{x}}^{T}(x) \neq \emptyset \end{cases},$$

where

$$A_{\chi}^{T}(x) = \left\{ \left| \chi(a)/\chi(b) \right|^{1/n} : \right.$$

$$bx^{n}yz = az$$
 with $(a, b, y, z) \in S \times S \times T \times T$.

It is appropriate to consider another auxiliary function associated with χ . We define

$$\beta_{\chi}^{T}(x) = \inf\{ \left| \chi(a)/\chi(b) \right|^{1/n} : bx^{n}z = ayz \text{ with } (a, b, y, z) \in S \times S \times T \times T \}.$$

2. Preliminary results. An immediate consequence of the definition of the function α_x^T is the following

Lemma 1. If χ is a nonvanishing semicharacter defined on a subsemigroup S of a commutative semigroup T, then the set

$$I_{x}^{T} = \left\{ x \in T \colon \alpha_{x}^{T}(x) = 0 \right\}$$

is either empty or an ideal of T.

Received by the editors March 1, 1965.

Certain properties of the function β_x^T which can be established by straightforward computations are listed in the following lemma.

LEMMA 2. Suppose that χ is a nonvanishing semicharacter defined on a subsemigroup S of a commutative semigroup T. If $(c, x, y, z) \in S \times T$ $\times T \times T$, then

(i) $\beta_x^T(cx) = |\chi(c)| \beta_x^T(x)$,

(ii) $\beta_{\chi}^{T}(xy) \leq \beta_{\chi}^{T}(x)\beta_{\chi}^{T}(y) \leq \beta_{\chi}^{T}(x)$, (iii) $\beta_{\chi}^{T}(x) = \beta_{\chi}^{T}(y)$ if xz = yz.

In particular, $0 \le \beta_x^T(x) \le 1$ for each $x \in T$.

LEMMA 3. Suppose that χ is a positive semicharacter defined on a subsemigroup S of a commutative semigroup T and suppose that $\beta_{x}^{T}(x) > 0$ for each $x \in T$. Then $\beta_x^T(e) = 1$ if T has an identity e. Moreover, if T is without identity and if $U = T^e$ denotes T with an identity e adjoined, then $\beta_{\mathbf{x}}^{U}(e) = 1$.

Proof. First, suppose that e is an identity for T. If $a \in S$, then $\beta_x^T(a) = \beta_x^T(ae) = \chi(a)\beta_x^T(e)$; hence $\beta_x^T(e) \neq 0$ since $\beta_x^T(a) > 0$. Part (ii) of Lemma 2 implies that $\beta_x^T(e) = 0$ or 1. Therefore, $\beta_x^T(e) = 1$.

Now suppose that T does not have an identity and let U denote Twith an identity e adjoined. If $\beta_x^U(e) < 1$, then for some positive integer n we have that $be^nz = ayz$ where $(a, b, y, z) \in S \times S \times T \times T$ and $\chi(b) > \chi(a)$. However, this implies that $b^{m+1}zz^m = a^{m+1}(y^{m+1}z)z^m$ for any positive integer m and that $\beta_x^T(z) \leq (\chi(a)/\chi(b))^{m+1}$. Since $\beta_{\mathbf{r}}^{T}(z) > 0$, it follows that $\beta_{\mathbf{r}}^{U}(e) = 1$.

LEMMA 4. Suppose that χ is a positive semicharacter defined on a subsemigroup S of a commutative semigroup T with identity e. If $\beta_{\mathbf{x}}^{T}(\mathbf{e}) \neq 0$, then condition (*) is satisfied and $\alpha_x^T(x) \leq 1$ for each x in T.

PROOF. Since $\beta_x^T(e) \neq 0$, $\beta_x^T(e) = 1$. Suppose that $a \in S$. Using (i) of Lemma 2, we have that

$$\beta_{\chi}^{T}(a) = \beta_{\chi}^{T}(ae) = \chi(a)\beta_{\chi}^{T}(e) = \chi(a)$$

since χ is positive. Now suppose that ax = bx where $(a, b, x) \in S \times S \times T$. Then $\chi(a) = \beta_{\chi}^{T}(a) = \beta_{\chi}^{T}(b) = \chi(b)$ and (*) is satisfied.

In order to prove that $\alpha_x^T(x) \leq 1$ for each $x \in T$, suppose that $x \in T$ and suppose that $bx^nyz = az$ where $(a, b, y, z) \in S \times S \times T \times T$. Then

$$\chi(b) \geq \chi(b)\beta_{\chi}^{T}(x^{n}y) = \beta_{\chi}^{T}(bx^{n}y) = \beta_{\chi}^{T}(a) = \chi(a),$$

which proves that $\alpha_x^T(x) \leq 1$.

LEMMA 5. Suppose that χ is a positive semicharacter defined on a

subsemigroup S of a commutative semigroup T with identity e and suppose that $\beta_x^T(e) \neq 0$. Let θ be the natural map from T onto the maximal cancellative homomorphic image of T. Then $\psi \colon \theta(a) \to \chi(a)$ is a (well-defined) positive character of $\theta(S)$ and $\beta_{\psi}^{\theta(T)}(\theta(x)) = \beta_x^T(x)$ for each $x \in T$.

PROOF. Since θ is the natural map from T onto the maximal cancellative homomorphic image of T, $\theta(a) = \theta(b)$ if and only if ax = bx. Condition (*) holds by Lemma 4. Thus the mapping $\theta(a) \rightarrow \chi(a)$ is a well-defined mapping on $\theta(S)$. The verification of the equation $\beta_{\psi}^{T}(T)(\theta(x)) = \beta_{\chi}^{T}(x)$ is also direct.

Principal results.

THEOREM. Suppose that χ is a positive semicharacter defined on a subsemigroup S of a commutative semigroup T. Then χ can be extended to a positive semicharacter of T if and only if there is a subsemigroup P of $S \times T$ having the properties:

- (a) if $x \in T$, there exists $a \in S$ such that $(a, x) \in P$;
- (b) if $(a, x) \in P$, then $|\chi(a)| \leq \beta_{\chi}^{T}(x)$.

PROOF. Suppose that χ can be extended to a positive semicharacter ψ of T. Then

$$P = \{(a, x) \in S \times T \colon \chi(a) \leq \psi(x)\}\$$

is a subsemigroup having the properties (a) and (b) provided that we define $\psi(x) = 1$ for all $x \in T$ if $\chi(x) = 1$ for all $x \in S$. The main point here is that $\psi(x) \leq \beta_x^T(x)$ for each $x \in T$.

Conversely, assume that P is a subsemigroup of $S \times T$ having the properties (a) and (b). Notice that these properties of P imply that $\beta_x^T(x) > 0$ for each $x \in T$. If T does not have an identity element, let T^e denote T with an identity e adjoined. It follows from Lemma 3 that $P' = P \cup \{(a, e) : (a, x) \in P\}$ is a subsemigroup of $S \times T^e$ having properties (a) and (b) where T is replaced by T^e . Thus we may assume that T already has an identity e. By Lemma 5, we may assume that T is cancellative. Let G be a commutative group containing T. Since $\beta_x^T(e) \neq 0$, Lemma 4 implies that condition (*) is satisfied and that $\alpha_x^T(x) \leq 1$ for each $x \in T$. If $I_x^T = \{x \in T : \alpha_x^T(x) = 0\}$ is empty, then we know that $x \in T$ can be extended to a positive semicharacter of T according to the theorem in [1]. If I_x^T is not empty, we define $Q = \{(a, x) \in P : x \in I_x^T\}$. Now Q is a subsemigroup of P; indeed, Q is an ideal of P since I_x^T is an ideal of T. Let π be the natural homomorphism from Q into G, that is, $\pi(a, x) = ax^{-1}$. Define $U = \{T, \pi(Q)\}$, the subsemigroup of G generated by T and $\pi(Q)$. Suppose that

beⁿz = awz where
$$(a, b, w, z) \in S \times S \times U \times U$$
 and (C)

n is a positive integer.

Then b=aw since U is cancellative and e is an identity element of U. Since $w \in U$, one of the following equations holds where $\chi(c) \leq \beta_{\chi}^{T}(x)$ and $(c, x, y) \in S \times T \times T$: w=y, $w=cx^{-1}$, or $w=cx^{-1}y$. If w=y, then $\chi(b) \leq \chi(a)$ since $\beta_{\chi}^{T}(e) = 1$. If $w=cx^{-1}$, then bx=ac, which implies that $x \notin I_{\chi}^{T}$; this leads to a contradiction since ac=awx=bx. Finally, if $w=cx^{-1}y$, then bx=acy and $\chi(b)\beta_{\chi}^{T}(x)=\chi(a)\chi(c)\beta_{\chi}^{T}(y)$, so $\chi(b) \leq \chi(a)\beta_{\chi}^{T}(y) \leq \chi(a)$. We have shown that (C) implies that $\chi(b) \leq \chi(a)$; hence $\beta_{\chi}^{U}(e) = 1$. It is easy to verify that I_{χ}^{U} is empty. Therefore, χ can be extended to a positive semicharacter of U and consequently to the subsemigroup T of U.

It is immediate that if the subsemigroup S of the commutative semigroup T is a homomorphic retract of T, then any positive semicharacter defined on S can be extended to a positive semicharacter of T. We now have a generalization of this.

COROLLARY 1. Suppose that χ is a positive semicharacter defined on a subsemigroup S of a commutative semigroup T. If there is a homomorphism π from T into S such that $\chi \pi \leq \beta_x^T$, then χ can be extended to a positive semicharacter of T.

PROOF. Define $P = \{(\pi(x), x) : x \in T\}$. Then P is a subsemigroup of $S \times T$ and P satisfies conditions (a) and (b) of Theorem 1.

COROLLARY 2. Suppose that χ is a nonvanishing semicharacter defined on a subsemigroup S of a commutative semigroup T. Then χ can be extended to a nonvanishing semicharacter of T if and only if condition (*) holds and there is a subsemigroup P of $S \times T$ having properties (a) and (b).

PROOF. Observe that $\beta_x^T = \beta_{|x|}^T$ and apply Lemma 1 of [1].

4. The insufficiency of a positive β . Suppose that χ is a nonvanishing semicharacter defined on a subsemigroup S of a commutative semigroup T. The question whether the condition $\beta_{\chi}^{T}(x) > 0$ for each $\chi \in T$ is sufficient in order that χ can be extended to a nonvanishing semicharacter of T is natural to consider. A negative answer is given below. It is convenient now to use the additive notation. In fact, we exhibit a counterexample by using a semigroup T of the additive real numbers.

Let $L = \{a_{i,j}, x_k\}$ be a set of linearly independent real numbers where i and j range over the positive integers and k over the non-

1182 PAUL HILL

negative integers. Let $S = \{a_{i,j}\}$ be the subsemigroup of the additive real numbers generated by the $a_{i,j}$'s and let $T = \{L, (ix_0 + x_j - a_{i,j})\}$ be the subsemigroup of the additive reals generated by the set L and the numbers of the form $ix_0 + x_j - a_{i,j}$ where i and j are positive integers.

Define a positive semicharacter χ on S by: $\chi(a_{i,j}) = 1/2^{ij}$. We show that $\beta_{\chi}^T(x) > 0$ for each $\chi \in T$. First, suppose that $x = \sum_{k=0}^r n_k x_k$ where n_k is a nonnegative integer for each k, that is, suppose that $\chi \in X = \{x_0, x_1, x_2, \cdots\}$, the subsemigroup of T generated by the x_k 's. Suppose that $a = \sum p_{i,j} a_{i,j}$ and $b = \sum q_{i,j} a_{i,j}$ where $1 \le i, j \le m$ and $p_{i,j}$ and $q_{i,j}$ are nonnegative integers. If b + nx = a + y where $y \in T$, then it follows from the definition of T and the linear independence of L that $p_{i,j} \le q_{i,j}$ if j > r and that $p_{i,j} \le q_{i,j} + nn_0/i$ if $j \le r$. Thus $\chi(a)/\chi(b) \ge (1/2)^{r(r+1)nn_0/2}$ and, therefore, $\beta_{\chi}^T(x) \ge (1/2)^{r(r+1)n_0/2}$ since the latter number is independent of the choice of a and b in S. Now if t is an arbitrary element of T, there are elements c and d in S such that c+t=x+d where $x \in X$. Hence

$$\beta_{x}^{T}(t) \ge \beta_{x}^{T}(c+t) = \beta_{x}^{T}(x+d) = \chi(d)\beta_{x}^{T}(x) > 0.$$

If ψ is an extension of χ to a positive semicharacter of T and if $\psi(x_k) = h_k$, then

$$\psi(ix_0 + x_j - a_{i,j}) = h_0^i h_j 2^{ij} = (2^j h_0)^i h_j > 1$$

for appropriate i and j. Since χ cannot be extended to a positive semicharacter of T, χ cannot be extended to a nonvanishing semicharacter of T.

REFERENCES

- 1. W. W. Comfort and Paul Hill, On extending nonvanishing semicharacters, Proc. Amer. Math. Soc. 17 (1966), 936-941.
- 2. K. A. Ross, Extending characters on semigroups, Proc. Amer. Math. Soc. 12 (1961), 988-990.

EMORY UNIVERSITY AND
UNIVERSITY OF HOUSTON