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EQUATIONS OF GENUS 3
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Let f(x) =/(xi, x2, • • • , x„) be a polynomial in the x,- with integer

coefficients. Consider the diophantine equation

(1) f(xh x2, ■ ■ ■ , xn) = 0.

Two questions arise:

(I) to find integer solutions,

(II) to find rational solutions.

If for (II), we put Xi = Xi/X„+i, • - • , xn=x„/Xn+i, then /(x)=0

becomes a homogeneous equation, say,

(2) f(Xi, X2,--, Xn+i) = 0,

where Xn+i5^0. We ignore the trivial solution (X) =0 of any homo-

geneous equation and consider solutions (X), (kX), k a constant, as

identical, and so we always suppose that (X\, X2, • • • , Xn+i) = l.

Thus question (II) is included in (I).

An interesting and important problem is to find conditions under

which the equation f(x) = 0 has only a finite number of integer solu-

tions. A further question would be to find estimates for the magnitude

of the solutions in terms of the coefficients of f(x). Several methods

are known. Thus (1) is impossible if there exists a number M for

which the congruence f(x) = 0 (mod M) is impossible, but when/(x)

is homogeneous, we also require that the x have no common divisor

with M.

Results may sometime [l], [2] be obtained by writing f(x) = 0 in

the form

(3) F(x)G(x) = Eh(x),        h^l,

where F(x), G(x), H(x) are polynomials in x with integer coefficients.

Some values of x may be excluded by congruence conditions, and

the others, except perhaps for a finite number, if the divisors of iT(x)

have special linear forms and G(x) is not of such a form. This happens

for instance when 2T(x) =iT(xi, x2) is a norm form in a quadratic field,

and sometimes when iT(x) =H(xi, x2, xs) in special cubic fields. Again

from (3) when h> 1, we can deduce either H(x) =0 or simultaneous

equations such as
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(4) P(x) = kiHx(x),       G(x) = k2Hh2(x),

where k\, k% are constants, finite in number; but usually £(x), G(x),

H(x) are homogeneous functions, n = 3, and H(x) =H(xi, x2, x3) in (3).

Of course, by Siegel's theorem, there are only a finite number of

integer solutions if n = 2 and the genus of the equation exceeds one.

The situation, however, is very different when rational solutions are

required, or integer solutions when the equation is written in the

homogeneous form. Very little indeed is known about this. We have

a conjecture of mine enunciated nearly 45 years ago.

Conjecture. There are only a finite number of rational solutions of a

polynomial equation f(x) in two variables and of genus > 1.

Some instances are known for the quartic equation of genus 3,

Ax* + By* + Cz* = 0,

which includes Fermat's equation x44-y4 —z4 = 0 as a special case.

Results are usually found on replacing z2 by z; then a curve of genus

1 arises.

Three theorems, relevant to the conjecture, are now proved for

some quartics which in general are of genus 3 since they have no

double points.

Theorem I. The equation

(5) ki(ax2 + by2 + cz2)(a'x2 + b'y2 + c'z2) = k2(px2 4- qy2 4- rz2)2,

or say,

kxFG = k2H2,

where (ki, k2)=l, k2 is square free, fei>0, k2>0 and have only divisors

= 1 (mod 8), has no integer solutions with (x, y, z) = 1 provided that the

coefficients are integers such that

(I) a = h = c=-l (mod 8),

and that either

(IA) a>0, b>0, c>0, or

(IB) o'>0, b'>0, c'>0, or

(IC)   -aa'^0, a(ab'-a'b)^0, a(ac'-a'c)^0.

(II) All odd divisors of

a,    b,    c,

(6) A =    a',    b', c',

P,    9,    r,

are = 1 (mod 8), and either

(III) A is odd, or
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(IV) A is even and either

(IVA) o'=0 (mod 2), b' = c' = l (mod 2), b'+c'=i, 6 (mod 8), or

(IVB) a' = l (mod 8), a'b-ab'=a'c-ac'= -2 (mod 16), or

(IVC) a' = ka, b'=kb, c' = kc, k=-l (mod 4).

Any common factors of F, G can only be divisors of kik2, and of H,

and so must be divisors of A.

We first consider the solutions for which px2+qy2+rz29*0. Then

we cannot have both F<0, G<0. It suffices to prove this for (IC).

If ax2+by2+cz2= -e<0, then

a2(a'x2 + b'y2 + c'z2) = a(-a'e + (ab' - a'b)y2 + (ad - a'c)z2)

;t contradiction.

Suppose next that A is odd. Then if H9*0,

2 1
(7) F = k3w ,        G = kiWi,

where k3 = kt = l (mod 8), are taken from a finite set and w, Wi are

integers. Here F = k3w2 is impossible, for taking a congruence (mod 8),

we have

x2 + y2 + z2 + w2 =- 0 (mod 8),

and this requires x=y=-z = w = 0 (mod 2).

Suppose next that A is even. Then in addition to (7) which is still

impossible, we have also

(8) F = 2k3w\        G = 2kiw\,

where &3 = &4=1 (mod 8), are taken from a finite set. We now deal

with F=2k3w2. Clearly w is not even since then x2+y2+z2 = 0 (mod 8)

and so x=-y=z=-0 (mod 2). Hence w is odd and then x = 0 (mod 4),

y = z = l (mod 2), etc. The second equation in (8),

2 2 2 2

ax + b y  + c z  = 2&4W1

leads now to the corresponding congruences

b' + c' = 2w\ (mod 8),      a' + c' =• 0 (mod 2),      a' + b' = 0 (mod 2),

all of which are impossible from (IVA).

For (IVB), on eliminating x2 in (8), we have

2

(a'b — ab')y2 + (a'c — ac')z2 = 2k%a'w2 — 2ktawi.

This becomes
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2 2 2 2
— 2y  — 2z  = 2w  + 2wi (mod 16),

and this is impossible.

For (IVC), we have

2 2
kwi — w  s 0 (mod 8),

and is impossible since w is odd.

We now consider the solutions with £x24-gy24-rz2 = 0. Since

a = & = c=-l (mod 8), ax2+by2+cz29*0, and so a'x2-R'y2+c'z2 = 0.

This excludes (IB).

Suppose that (x, y, z) = (x0, yo, z0) is a solution. Then

2 2 2

xo yo 20

b'r — c'q      c'p — a'r     a'q — b'p

and so we may take

2 2 2
b'r — c'q = dx0,        c'p — a'r = dy0,        a'q — b'p = dzo.

Hence A = a(b'r — c'q)+ ■ ■ ■ =d(axl+byl+czl) =dA0, and so the odd

factors of d and A0 are = 1 (mod 8). Also

2 2 2
A0 = — xo — yo — Zo (mod 8).

We now examine the cases (IA), (IC). We exclude xo=yo="Zo=T

(mod 2) since then Ao=-— 3 (mod 8), and if A0 ^ — 1, we exclude

x0 = l, yo = z0 = 0 (mod 2): and if A0 ^ —2, we exclude x0 = yo="l

(mod 2), z0 = 0 (mod 4), since then A0= — 2 (mod 8). Hence we have

x0=y0=l (mod 2), z0 = 2 (mod 4), etc. Now A0 = 2 (mod 8), and

there are three possibilities &'4-c'4-4a'=0 (mod 8), etc. These

contradict (IVA), (IVC), and also (IVB), which gives b'=c'=— 1

(mod 8). Hence there are no solutions1 with (IA), i.e., a>0, b>0,

c>0, and A0^ —1, —2, in case (IC).

We now examine the possibilities A0 = ± 1, ±2. The first is typified

by (x, y, z) = (1, 0, 0). Then a' = 0, p = 0, A0 = a, and so a = — 1 and

A= -(b'r-c'q). The condition (IC) gives b'^0, c'^0. We have from

(III) and (IVA) the

Theorem II. The equation

1 I owe this result to Dr. J. W. S. Cassels. I had thought there might be solutions

of px2+qy*+rz2 = 0. a'xi+b'y'i+c'z* = 0.
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(-x2 + by2 + cz2)(b'y2 + c'z2) = (qy2 + rz2)2

has only the solution (1, 0, 0) if b = c= — l (mod 8); b'^0, c'^0, and

either b'r — c'q is divisible only by odd primes =1 (mod 8), or is also

divisible by 2 if b', c' are odd and b'+c' =i, 6 (mod 8).

No results arise from A0 = 2.

In the proof of Theorem I, we have used the impossibility of integer

solutions of

(9) px2 + qy2 + rz2 + sw2 = 0,

when p, q, r, s are odd and p = q = r = s (mod 8). By a theorem of

Meyer, there are other instances when (9) is impossible and this

would lead to new results. It would suffice to take such an equation

with s= — 1, and then the equation (9) would still be insoluble if s

were replaced by s' m — 1 (mod M) for an easily assigned IT depending

on p, q, r. Then we impose the condition that the new A should have

only factors typified by M.

Theorem III. The equation

(br - cq\3 (cp - ar\3 (aq - bp\3

(10)   (-^)*,+(V>,+(-Vt,=0
has no integer solution, if

(I) <z>0, b>0, c>0; a=.&=c=- —1 (mod 8); (b, c)=(c, a)=(a, b)
= 1,

(II) p = 0 (mod 8), q = r=-l (mod 8),

(III) (br — cq)/a = (cp—ar)/b = (aq — bp)/c = 0 (mod 1), and thepos-

itive odd factors of these three terms are all =1 (mod 8).

To reduce (5) with h = k2, to the form (4), we impose the condi-

tions b'c+bc' = 2qr, c'a + ca' = 2rp, a'b+ab' = 2pq, and so

(11) bca' = — aqr + brp + cpq,

etc. Then a', b', c' will be integers if p, q, r satisfy the congruences

cq — br = 0 (mod a),    ar — cp = 0 (mod b),   bp — aq = 0 (mod c),

and these congruences are compatible since (a, b)=l, etc. The equa-

tion (5) now takes the form

(aa' - p2)x* + (bb' - q2)y* + (cc' - r2)z* = 0,

or
/a2qr — abrp — acpq \
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or

a(pb — aq)(pc — ar)x* + • • • = 0.

On replacing x by (qc—rb)x/a, etc., we have the equation

(£^)'*> + (=^V + (^-°)V - o.

Now
a?;- + &r/> + cpq

u        ""' ■'"
-A = .

a, .......

P, ••.,...

On multiplying the columns by be, ca, ab, and dividing the second

row by abc, we have

— aqr + brp 4- cpq, ■ ■ ■ ,

— abc A = 1, • ■ • ,   • • •

pbc, ■ ■ ■ ,

aqr,    brp,    cpq

abcA = 2      1,       1,        1

pbc,    qca,    rab

= 2 2~2 a2qr(br — cq),

and so

fl2) i=.2(^)(^)(^.

Hence the odd factors of A are =1 (mod 8). Since A is even, we have

to consider both (7) which is still impossible and (8). From (11) we

write (8) in the form

— aqr 4- brp 4- cpq   2 2
-x  4- • • • = 2£4Wi,

be
or

/ X^ *V^ 2^ \
(aqr + brp + cpq) (— + — + — )

\bc      ca      ab/
(13)

if^     2<brp     2SCM    2"\ ,i       2
— 21-x2 -j-y2 -|-z2) = IkiWi.

\ be ca ab    /



1158 L. J. MORDELL

Since ax24-c-y24-cz2 = 2£3w4, (13) becomes

(aqr + brp + cpq)k3w2      (aqr brp cpq    \ 2
-(-x2 4-y2 H-zl I = kiwx-

abc \ be ca ab     /

Hence
2 2 2 2 2

(14) (qr + rp -\- pq)w 4- qrx 4- rpy 4- pqz = wi (mod 8).

Since x24-y24-z2= — 2w2 (mod 8), one of x, y, z must be even, say x,

and then y=z=w = l (mod 2), and x = 2 (mod 4). Then (14) becomes

2

Sqr 4- 2rp + 2/>g = Wx (mod 8).

If we take y = 2 (mod 4) etc., we might also have

2
5rp 4- 2pq 4- 2qr = Wi (mod 8)

2
5pq -\- 2qr + 2rp = Wi (mod 8).

All these are impossible if we take p=0 (mod 8), and qr = l, 3, 7

(mod 8).

We now examine the condition that (qc — rb)/a, (ra — pc)/b and

(pb — qa)/c should be divisible only by 2 or by primes =1 (mod 8).

We take arbitrary q, r such that the odd factors of (qc — rb)/a are

= 1 (mod 8), and also q=r= — 1 (mod 8). We take p so great that

bY = pc — ra>0, cX = pb-qa>0, and p=0 (mod 8). On puttingp =

86cP4-Pi say, then

X = (pb - qa)/c = 8b2P + P2, Y = (pc - ra)/b = 8c2P 4- P3,

say, where P2=P3 = 1 (mod 8). Our problem now is to find P such

that X, Fare divisible only by primes =1 (mod 8) and X>0, F>0.

There should be no difficulty in finding numerical instances.

The question of the existence of an infinity of values for P is

equivalent to that of the existence of an infinity of solutions of AX

+ BY=C where X, Y have only prime factors with an assigned

residue mod Mi, mod M2 respectively. If X, Y are to be primes, this

becomes a very difficult unsolved problem.
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