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1. A series

CXI

ZZ an
n-l

is said to be lacunary if all its terms are zero, except perhaps for a set

of indices

0 < «i < ra2 < • • •

which satisfy the condition

ra.-+i/«< ̂  q > I,        i = 1,2, ■ ■ • .

Throughout, let {X„} be a sequence of positive numbers such that

1 g Xi < X2 < • • •

and let zZa" be the given infinite series.

The series zZa^ IS said to be summable iA, X) if

(1.1) fix) = zZ a" exp[—A»*]

converges for x > 0 and lim fix) as x—>0 exists and is finite.

The Dirichlet series (1.1) is called lacunary if the X„ satisfy the

condition

(1.2) Xn+1/X„ £ q> 1,        ra = 1, 2, • • ■ .

The series zZan is called |^4, X|  summable if the series (1.1) con-

verges for x>0 and fix) is of bounded variation in (0, °°).

We write

A\ix)   =    ZZ   (X  —  An)   On

= fix- t)kdAx«),

A\ix) = A\ix) = 2-, a",

Alix) =0   for x £ 1 and k > - 1.
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We also write

B\(x) = Y (x ~ A»)* A»ffl»-
X„<z

The series / ,an is said to be summable (R, X, k) to the sum s, ii

lim x~~hAk(x) = s as x—»oo; the series is said to be absolutely Riesz

summable with index m, or simply | R, X, k\m summable if

/"*          d   _t   k       m
xm-l   - x     A\(x)        dx < oo

i            dx

where k>0, m^.1, and km'>l (1/mA-l/m' = 1). The first theorem

of  consistency  for   | R, X,   k\m summability  has  been  proved   by

Mazhar [4].

We say that the given series Ya» 1S summable | R, X, k, y\ m if

/"* d   _*   k       m
xmy+m-1 — x   A\(x)     dx < oo

i dx

where k>0, km'>l, fe>7~ 1 and 7 is a real number.

I R, X, k, 0\m summability is the same as | R, X, fe| m summability.

2. The Hardy-Littlewood "high indices" theorem [l] asserts that

for a lacunary series Abel summability implies convergence. Zygmund

[6] has shown that if 2^a„ is summable \A, X| and the X„ satisfy

(1.2) then Yan is absolutely convergent.

Waterman [5] generalized Zygmund's result and proved the fol-

lowing theorems.

Theorem A. If the series f(x) = Ya" exP [—X„x] is lacunary, m>l,

and

/• 00

(1 — e-x)m~l \f'(x) \mdx < 00

0

then

Y    I   On \m   <    °° ■
n-l

Theorem B. If the series f(x) = Ya* exP [—X„x] is lacunary, m>l,

1 ̂ )3 = w, and

/» CO

(1 - e-xY~l\f'(x) \mdx< oc
0

then
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^-,    | I m   m—(3

2_,    I   On |    Xn <    OO .
n-l

The following theorem is due to Hardy and Riesz [2].

Theorem C. // zZa« *5 summable (P, X, k) and X„'s satisfy (1.2),

then zZan converges.

3. We prove the following theorems.

Theorem 1. // (i) zZan is summable \R,\,k\m,

(ii) fix)= zZan exp [—X„x] converges for x>0, and

(iii) the X„ satisfy (1.2), Zfeera ^™ | a„ \m < oc .

Theorem 2. // zZan is summable \ R, X, k, y \ m, 0 <7 ^ 1 — 1/rai, orad

the X„ soZw/y (1.2), Zfeera£| a„|mXr < °».
I wish to thank Professor Waterman for suggesting the problem

and for his valuable guidance.

3.1. The following lemmas will be used to prove our theorems.

Lemma 1 [3]. // Bkix) is the (P, X, k) sum of the series ^o„X„, then

for k>0

d        4   k _/t_i  k-i
— ix   ^4x(*)) = kx      B\   (x).
dx

Lemma 2 [2], [3]. If k> -1, p>0, then

k+p       rik + p+i) r*       .*-!.*,. ,
Ax   ix) =- I    ix - t)     Axit) dt.

Tik+l)Tip)Ji

Lemma 3. // zZan is summable \ R, X, k\m, then it is also summable

\R, X, h\mfor h>k.

Proof of Lemma 3. Summability | R, X, k\ m of zZa" with Lemma 1

implies

/■ OD

—mk—1 I       k— 1 iffl

X I  5\     (x) I     OX <   00 ,
1

and to prove the lemma it is sufficient to show that

/» DO

—mh—l I        n— 1 im

x I Bx    ix) I    OX < 00 .
1

Let h = k+p, p>0. Applying Lemma 2 to the series y,a„X„ we have

Bl~\x) = M f\x - /)P_1Bx"10) dt.
J 1
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Throughout this paper M denotes a positive constant which is not

necessarily the same at every occurrence.

Applying Holder's inequality, we have

bt\X) \m*M | fix - trl\ &~\o \mdj {/%- <r1<fc}m~I

<Mx{m~1)P f(x-trl\Bl'\t)\mdt.

Therefore

—m/i—1 I       h—1 im

x | .Bx   W |   dx

< M I    x dx j    (x- t)      | Px   (01   dt

/» OC /» 00
, ,   I        I   T,*—1, ,   im   ,     I        , , P— 1   —mfc—p—1   .

= M | Px   (0 |   dt j     (x - t)     x dx

/oo —mk— 1 i       fc— 1 . ,   im   .

t I Px   (/) I   dt

< oo.

Lemma 4. Let y>u, ra>£ = l. // Ya" is summable \R, \, k, y\„

then it is also summable \ R, X, k, u\ P.

Proof of Lemma 4. Under the hypothesis of the lemma we have

to show that

7=1    a; I Px   (x) \  dx < °°.
J i

Using Holder's inequality with indices m/p and m/(m — p) we have

x \ Bx   (x)\   dx>       \\x      dx\

where

pm(y -P-)
€  =  - > 0

m — p

and the conclusion follows immediately.

Lemma 5 [2]. If f(x) = Ya* exP [—^»x] converges for x>0 then
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/»  00

fix) = Mx"+1 J    A\it)e'xtdt.

4. Proof of Theorem 1. From Lemma 3 we have summability

|P, X, k\m of zZa" implies its summability \R, X, fc + l|m. Thus we

have

/oo —mk—m— 1 I        k ,   .    \m

x I 5x(x) j   dx < oo.

Applying Lemma 5 to the series/'(x) = — ̂ a„Xn exp [— Xnx] we have

/» oo

fix) = - Mxk+1 I    Blit)e~x'dt.

Let

/►  CO

(1 - e-x)m-x\f'ix) \mdx
0

/► CO

fex _ l)">-i|/'(a;) \»dx.
0

Thus

/i oo I     /» oo m

(e1 - l)'»-1x*™+m dx   I    Bkii)e-Xtdt     .

o I «^ 1

Let us choose p such that 1 <p<m/im — 1); this is possible since

m>l. Let l/p+l/p' = l.
Applying Holder's inequality to Z-integral of (4.2) we have,

f < M J    (e  - 1)      x        dx <   I     | BxQ) | e dZ>

Uco \   m—1

/» oo /» CO. x ..ni-l   Am+1   ,       I I   „*, .   i'» —mx(/»   .

(e  - 1)     x       <te I     I 5x0) | « *
o ^ 1

/► 00 /•  CO
I ~*/ v  lm   ,      I        • x ,.m-l   Am+1 —mxt/p   .
| 5X(0|  * I    (c - 1)     *      e <fa

i *^ o

/» 00 /» 00

I   „* • ^  im —Am—2   ,1        , x/t jVm— 1   Am+1 —mxlp

| Sx(<)| Z dt \    ie    -1)     x      e        dx.
i «^ o
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Since for t^l, exlt — l^ex/t, we have

/»  CO /*  X

—tuft— m—1 I nk . .   \m   _     f fcm+1 —(m/p—m+l)x   ,

< | Px(/) 1^1    *      c <fce.
1 J 0

The x-integral converges since m/p — w + l>0. This together with

(4.1) implies /< «>.

Thus all the conditions for Theorem A are satisfied: the conclusion

follows.

Remark. For m=l, i.e., when ^a„ is summable | R, X, & , condi-

tion (ii) of Theorem 1 is redundant. In this case summability R, X, k\

obviously implies summability (R, X, k) and if the X„'s satisfy (2.1)

then by Theorem C, Yan converges.

Proof of Theorem 2. The proof is analogous to that of Theorem 1,

except that the condition (ii) of Theorem 1 may be omitted. This is

justified by Lemma 4 and the remark above, and the conclusion fol-

lows from Theorem B of Waterman.
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