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Kaplansky in Theorem 2 of [3] has shown that if A is an alterna-

tive algebra with identity element 1 which contains a subalgebra B

isomorphic to a Cayley algebra and if 1 is contained in B then A is

isomorphic to the Kronecker product B®T, where T is the center

of A. Jacobson in Theorem 2 of [2] has shown that if A is an alterna-

tive algebra which contains a subalgebra B isomorphic to a Cayley

algebra, then the identity e of B must lie in the center of A, provided

A has characteristic different from 2. He also has given a new proof

of the Kaplansky result, using his classification of completely reduci-

ble alternative bimodules. In the present note we present a generaliza-

tion of the aforesaid result by Jacobson, which incidentally is also

valid for characteristic 2.

Theorem. Let A be an alternative algebra over F and B any subalge-

bra with identity e. Then consider the following two conditions.

(i) There exist x, y in B, a in F such that e = a(x, y)*, where (x, y)

= xy—yx.

(ii) The ideal I of B, generated by all associators of B equals B. If B

satisfies (i) then e must be in the nucleus N of A. If B satisfies (i) and

(ii) then e must be in the center C of A.

Proof. It will be helpful to recall some identities that hold in all

alternative rings R. Let p, q, r, s, t, x, y, z be arbitrary elements of R

and n an arbitrary element of the nucleus N' of R. Then

(1) (5, tY is in N',

(2) (n, r) is in A',

(3) (n, (x,y,z))=0,

(4) («, r)(x, y, z) = -(n, x)(r, y, z),

(5) (p2,q)=p(P,q) + (P,q)P-
A proof of (1) may be found in Theorem 3.1 (ii) of [5]. Proofs of (2),

(3) and (4) are contained in Lemma 2.3 (ii), (iii) and (iv) of [4].

Identity (5) may be verified directly by expanding both sides of the

equation and using the alternative law. If B satisfies the hypothesis

and condition (i), then one may apply (1) directly to obtain that e
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belongs to N. If B also satisfies condition (ii), then select w = e, r as

arbitrary in A and x, y, z arbitrary in B and substitute this in (4).

Then (e, r) (x, y,z) = — (e, x) (r, y, z) = 0, since (e, x) = 0. The associator

ideal I oi B may be characterized as the additive subgroup of B gen-

erated by all elements of the form (73, B, B) and (73, B, B)B. We

have already proved that (e, r)(73, 73, 73) =0. But (e, r) belongs to N

as a result of (2), so that (e, r)-(B, B, B)B = 0 is also obvious and

hence (e, r)/ = 0. Since I = B and e itself belongs to B, we have

(e, r)e — 0. Using (2) we may substitute n = (e, r) in (3) to obtain also

that (B, B, B)(e, r) =0. As 7 may also be characterized as the addi-

tive subgroup generated by elements of the form (B, B, B) and

B(B, B, B), we obtain I(e, r) =0, and hence e(e, r) =0. At this point

we substitute p = e, q = r in (5) and obtain (e, r) = (e2, r)=e(e, r)

+ (e, r)e = 0. This places e in C and the proof of the theorem is com-

plete.

Condition (i) certainly holds when B is taken to be a quaternion

algebra and hence a priori if 73 is a Cayley algebra. Since Cayley

algebras are simple and not associative, condition (ii) clearly holds

when B is taken to be a Cayley algebra. Thus we obtain Jacobson's

result as a corollary to our theorem. On the other hand one may read-

ily construct other alternative algebras to which our theorem applies.

We conclude with an example that shows a quaternion algebra may

be embedded as a subalgebra of an associative algebra and with the

identity quaternion not in the center of the larger algebra. Consider

the free associative algebra 5 on the four generators w, x, y, z. Define

relations on x, y, z which make them behave as the quaternions 1, i, j

respectively. In the quotient algebra 7?, words have the form

• • • grw*r • • • q„wk' ■ ■ •

where g,= +x, +y, ±z, +yz. Then R contains a copy of the quater-

nions with identity x, but wx9*xw, so that x is not in the center of R.

If an example that is alternative but not associative is desired, then

one may take a direct product of R with a Cayley algebra.
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A CONDITION FOR A FINITE GROUP
TO BE NILPOTENT

STEPHEN MONTAGUE AND GOMER THOMAS

Let 3C be a class of groups such that:

(i)  If G is in 3C, then every homomorphic image of G is in 3C.

(ii) If G is finite and G/<p(G) is in 3C, where <p(G) is the Frattini

subgroup of G, then G is in 3C.

Examples of such classes are the class of nilpotent groups and the

class of supersolvable groups. Others can be found in a paper by

Baer [l].

In this note a theorem of P. Hall on nilpotent groups is proved as

a corollary to the following:

Theorem. If G is a finite group with a subgroup H such that <p(H)

is normal in G and G/<p(H) is in 3C, then G is in 3C.

LemmA (Huppert). Let G be a finite group, H be a subgroup of G,

and N be a subgroup of H such that N is normal in G and N^<p(H).

ThenN^<j>(G).

Proof. If not, G would have to have a maximal subgroup U such

that N£U. Then H = Gr\H=NU(~\H=N(UC\H) = Ur\H, since
N^<p(H). But this implies H^ U, contrary to A^ U.

Proof of theorem. An application of the Lemma with N=<p(H)

shows that <j>(H) ̂<p(G). Hence G/<j>(G) is in 3C, and so G is in 3C.

Corollary. If G is a finite group with a normal subgroup H such

that H is nilpotent and G/H' is nilpotent, where H' is the commutator

subgroup of H, then G is nilpotent.

Proof. Since H is nilpotent, <p(H) contains H'. Hence G/d>(H) is
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