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Introduction. Let/(x, y, y') satisfy the following conditions:

(0 f(x> y> y') is continuous on the slab

S = {(x,y,y')\a < x <b, \ y\  +  \ y'\   < + ■»},

(ii) for any y\ and y2 and any a<x\<x2<b the boundary value

problem

y(xi) = yi,   y(xi) = y2

has a solution which extends throughout (a, b) and any two solutions

which agree at two distinct points are identical throughout (a, b), and

(iii) solutions of initial value problems for (1) are unique.

In a paper in 1949 with these assumptions Peixoto [l ] stated the

following theorem.

Theorem 1. Jf^GC(!)(«, &)< then<t>"(x) ̂f(x, ct>(x), <f>'(x)) on (a, b)

is a necessary and sufficient condition for <j> to be a subfunction on (a, b)

with respect to solutions of (1).

The proof of the sufficiency of the differential inequality is based

on [l, Lemma 1, p. 565] but the proof of the lemma does not appear to

be correct. After some preliminary results in §1, we give in §2 a proof

of Theorem 1 by a quite different method. Also in §2 a modification

of Theorem 1 is given in which the assumption of the solvability of

the boundary value problem is replaced by a monotoneity condition.

1. Preliminary results. Let F(x, y, y') be continuous for c^x^d,

M +|/| < + G0- Let M>Q, N>0 be given and let

Q = Max{ | F(x, y,y')\\c^x^d,  \ y | ^ 2M, \ y'\   ^ 2N}.

Lemma 1. If [xu x2]c[c, d], \yi\^M, \y2\^M, \(yi-y*)

■(xi-xa)!-1^, and \xi-x2\ ^Min[(8M/0"2, 2N/Q], then the

boundary value problem

y" = F(x, y, y'),

y(*i) = yi,  yW = yi
has a solution y(x) of class C(2) [x\, x2].
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The  proof  is  a  straightforward  application  of   the   Schauder-

Tychonoff Fixed Point Theorem.

Lemma 2. If there are constants h>0 and k>0 such that

I F(x, y,y')\  ^ h + k\ y\w

for c^x^d and \y\-\-\y'\ < + °°. then the boundary value problem

y" = F(x, y, /),

y(c) = y,    y{d) = 5

has a solution for all y, 5.

Proof. For a given M>0 and N>0 and Q as defined above, we

have

Q ^ h + k(2M)1'2.

Hence, given y, 5 choose M>0 such that

\y\  ^ M,   \s\  ^ M,    and    (d - c)2 g $M/(h + k{2M)m).

Then with such an M chosen and fixed choose N>0 such that

| (7 - S)/(c - d) |  g N   and    d - c g 2iV(A + ^(2M)1/2).

It then follows from Lemma 1 that the boundary value problem has

a solution.

Let [c, d] be a compact subinterval of (a, b) and let each of the

functions cj> and \j/ belong to Ca) [c, d] and Cm(c, d). Assume that

and

0" ^ /(*, <t>, 4>') on (c, d),

xf/(x) ̂  <£(x)  on [c, d].

For given functions 0 and i/' with the above properties let N>0 be

such that

N ^ Max[Max | <t>'(x) | , Max | tf{x) | ].

Then define the function F(x, y, y') as follows:

F(x, y, y') = Fi{x, y, N)        for y' > N,

= Fi(», y, y')      for I /1 ^ N,

= Fi(x, y, -N)    for y' < - N,

where
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Fi(x, y, y') = /(*, *(*), y') + (y - *(x)yi*   for y > +(x),

= f(x, y, y')    for <f>(x) g y ^ t(x),

= f{x, *(*), y') - (0(*) - y)m    for y < <*>(*).

The function F(x, y, y') is continuous for c^x^d, \y\ +\y'\ < + °°

and | /""(a;, y, y') \ ?kh-\-\y\lli where

h = Max{ | f(x, y,y')\\c^x^d, <t>(x) ̂ y g ^(x),  | y' |   g 2V}

+ Max | 4>{x) I1'2 + Max | f(x) I1'2.

Lemma 3. Let <f>(x), ip(x), and F{x, y, y') be as above. Then for any

y, S with 4>(c) ̂y ^(c) and <f>(d) ^ 5 tkipid) the boundary value problem

y" = F(*, y, y'),

y{c) = y,   y(d) = s

has a solution y(x)E:Cm[c, d] and (j)(x)^y(x)^\p(x) on [c, d].

Proof. It follows from Lemma 2 that the boundary value problem

has a solution ;y(x)£C(2)[c, d]. Assume y(x)>\p(x) at some points of

(c, d), then y(x)— \{/(x) has a maximum at some point x0(E(c, d).

Then y'(x0) = ^'(x0) so that |y'(xo)| ^N, hence

y"(x„) - *"(*„) ^ /(*„, f(x0), ^(*o)) + (y(*o) - ^(so))1'2

-/(*o, *(*<>), *'(*o)) > 0

which contradicts having a maximum at x0. Thus y(x) ^(x) and,

similarly, <f>(x) ^y(x) on [c, d\.

Lemma 4. £e< f(x, y, y') satisfy conditions (i) and (ii) as giuew in the

Introduction. Let <j> be continuous on the compact interval [c, d](Z(a, b)

and assume that there is a solution z(x) of (1) such that z(c) = <£(<:),

z(d) =<j>{d), and z(x) <<j>(x) on (c, d). Then there is a solution y(x) of

(1) such that y(c) ><f>(c), y(d) ><j>(d), y(x) ^<j>(x) on (c, d) with equality

holding at some point of (c, d).

Proof. In [2] Beckenbach proves a number of results concerning

familes of functions for which the boundary value problem is uniquely

solvable. It follows from these results that if 5>0 is sufficiently small

the boundary value problem y" =/(x, y, y'), y(c) =#(c)+8, y(d) =<f>(d)

will have a solution u(x) with u(x) <</>(x) at some points in (c, d).

Furthermore, with such a fixed 5 then for sufficiently large M><p(d)

the boundary value problem y" =f(x, y, y'), y(c) =<f>(c) + 8, y(d) = M

will have a solution strictly greater than <j> on [c, d]. Let Mo be the

greatest lower bound of such  M. Then the solution y(x) of the
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boundary value problem with y(c) =0(c)+5, y(d) = M<> satisfies the

stated conditions.

2. Proof of Theorem 1. The proof of the necessity of a C(2) sub-

function satisfying the differential inequality can be found in

Theorem 1 of [l] or Theorem 6 of [3]. Consequently, we shall con-

sider only the sufficiency.

Assume that 0GC(2)(a. b) and that 0"^/(x, </>, <j>') on (a, b) but

that <j> is not a subfunction on (a, b). It follows that there is a com-

pact subinterval [c, d](Z(a, b) and a solution z(x) of the differential

equation such that z(c) =<j>(c), z(d) =<j>{d), and z(x) <<j>(x) for c<x<d.

Then by Lemma 4 there is a solution y(x) such that y(c)><t>(c),

y(d)><j>(d), y(x) ^</>(x) on (c, d), and y(x0) =<Kx0) f°r some c<x0<d.

Let iV>0 be chosen so that |/(x)| <N and | </>'(*) | <N on [c, d],

then with this N, y(x), and ^>(x), let F(x, y, y') be the function em-

ployed in Lemma 3. It follows from Lemma 3 that with <f>(c) <y<y(c)

and 4>{d) <h<y{d) the boundary value problem

y" = F(x, y, y'),

y{c) = y,   y(d) = 5

has a solution i,(x)GC'(2) [c, d] satisfying

(j}(x) ^ v(x) ^ ;y(x)  on [c, d\.

Then |z>'(x0)| = |/(xo)| = </>'(xo)| <A^ and there is an open interval

around Xo in which \v'(x) <N. From the definition of F it follows

that

F{x, »(x), »'(x)) = /(x, s(*), »'(x))

in such an interval and i;(x) is a solution of (1) in such an interval.

Let (a, /3) be the maximal open subinterval of [c, d] containing x0

on which |f'(x)| <N. As observed above v(x) is a solution of (1) on

(a, j3) and, since y(x0) =k(x0), /(xo) = 2/(x0) and the solution of the

initial value problem for (1) is unique, v(x)=y(x) on (a, j3). Then

I v' («) | = | / («) | < -W and | v' ((3) | = | / ((3) | < N which forces us to con-

clude that a = c, (5 = d, and v(x) =y(x) on [c, d]. This contradicts

»(c)<y(c) and v(d)<y(d). We conclude that 0 is a subfunction on

(a, b).
From the proof as given it is clear that it would have sufficed to

assume that the solution of the initial value problem for (1) is

unique on the right at every point or that it is unique on the left at

every point.

Theorem 2. Assume f{x, y, y') is continuous for a ^x^b, \y\ +|/|
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< + °° ,/(x, y, y') is nondeceasing as a function of y for each fixed x and

y', and the initial value problem for y" =/(x, y, y') has a unique solution.

Then, if 0GC(2)(a, b), a necessary and sufficient condition that <j> be a

subfunction on (a, b) is that 0"3?/(x, 0, 0') on (a, b).

Proof. The proof of the necessity of the differential inequality is

the same as in Theorem 1 and the references listed there still apply.

Assume that 0EC(2)(a> b) and 0"^/(x, 0, 0') on (a, b) but that 0

is not a subfunction on (a, b). Then again it follows that there is a

compact interval [c, d\Q(a, b) and a solution z(x) of the differential

equation with z(c)=d>(c), z(d)=d)(d), and z(x) <0(x) on (c, d).

Let M = Max{0(x)-z(x)|c^x^d}, then M>0, and, if ^(x)

= z(x) + M, xl/(c)><t>(c),\(/(d)><j>(d)t\(/(x)^^(x) on (c, d) with equality

at some point c<x0<d, and d>" ?^f(x, ip, $') on (c, d). Let 7V>0 be

such that |^'(x)| <N and \<j>'{x)\ <N on [c, d]. Let ^(x, y, y') be

the function of Lemma 3 associated with N, d>, and \p. Then for

0(c) <y<\{/(c), <f>(d) <5<\[/(d) the boundary value problem

y" = F(x, y, y'),

y(c) = y,   y(d) = 8

has a solution y(x) £CC2> [c, tf ] with

0(x) ^ y(x) ^ ^(x) on [c, d].

Since |0'(xo)| = ^'(xo)! = |y'(xo)| <N, there is an open interval

containing x0 in which | y'(x) \ <N. Let (a, /3) be the maximal such in-

terval, then in (a, /3) y(x) is a solution of y" =/(x, y, y'). If a <<x, then

0(a) <y(a) <^(a). For, if for example y(a)=0(a), then |y'(a)|

= |0'(a)| <N and the interval (a, /3) would not be maximal. Similarly,

if j3<o, then 0(/3)<y(|3) <\p((i). Thus in any case y(x) is a solution

of y"=/(x, y, y') on [a, 0], y(«)>0(a), y(j8)>0(/3), and y(x) ^0(x)
on [a, j8] with equality at a<x0</3. From this point the proof pro-

ceeds as in the proof of Theorem 1.

Again it suffices to have uniqueness of the initial value problem on

the right or uniqueness on the left.
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